首页> 外文期刊>Archives of Computational Methods in Engineering >A Digital-Twin and Machine-Learning Framework for Ventilation System Optimization for Capturing Infectious Disease Respiratory Emissions
【24h】

A Digital-Twin and Machine-Learning Framework for Ventilation System Optimization for Capturing Infectious Disease Respiratory Emissions

机译:用于捕获传染病呼吸排放的通风系统优化的数字双胞胎和机器学习框架

获取原文
获取原文并翻译 | 示例

摘要

The pandemic of 2019 has led to an enormous interest in all aspects of modeling and simulation of infectious diseases. One central issue is the redesign and deployment of ventilation systems to mitigate the transmission of infectious diseases, produced by respiratory emissions such as coughs. This work seeks to develop a combined Digital-Twin and Machine-Learning framework to optimize ventilation systems by building on rapidly computable respiratory emission models developed in Zohdi (Comput Mech 64:1025-1034, 2020). This framework ascertains the placement and flow rates of multiple ventilation units, in order to optimally sequester particles released from respiratory emissions such as coughs, sneezes, etc. Numerical examples are provided to illustrate the framework.
机译:2019大流行导致了对传染病的建模和模拟的各个方面的巨大兴趣。 一个中央问题是重新设计和部署通风系统,以减轻传染病的传播,由咳嗽等呼吸排放产生。 这项工作旨在开发一个组合的数字双胞胎和机器学习框架,通过在Zohdi开发的快速可计算呼吸发射模型上建立通风系统(计算机机械64:1025-1034,2020)。 该框架确定了多个通风单元的放置和流速,以便最佳地螯合从呼吸排放释放的粒子,例如咳嗽,打喷嚏等。提供数值示例以说明框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号