首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Multi-material thermomechanical topology optimization with applications to additive manufacturing: Design of main composite part and its support structure
【24h】

Multi-material thermomechanical topology optimization with applications to additive manufacturing: Design of main composite part and its support structure

机译:多材料热机械拓扑优化及其在增材制造中的应用:主要复合材料零件及其支撑结构的设计

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a density-based topology optimization formulation for the design of multi-material thermoelastic structures. The formulation is written in the form of a multi-objective topology optimization problem that considers two competing objective functions, one related to mechanical performance (mean compliance) and one related to thermal performance (either thermal compliance or temperature variance). To solve the optimization problem, we present an efficient design variable update scheme, which we have derived in the context of the Zhang-Paulino-Ramos (ZPR) update scheme by Zhang et al. (2018). The new update scheme has the ability to solve non-self-adjoint topology optimization problems with an arbitrary number of volume constraints, which can be imposed either to a subset of the candidate materials, or to sub-regions of the design domain, or to a combination of both. We present several examples that explore the ability of the formulation to obtain candidate Pareto fronts and to design support structures for additive manufacturing. Enabled by the ZPR update scheme, we are able to control the complexity and the length scale of the support structures by means of regional volume constraints. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文提出了一种用于多材料热弹性结构设计的基于密度的拓扑优化公式。该公式以多目标拓扑优化问题的形式编写,该问题考虑了两个相互竞争的目标函数,一个与机械性能(均值顺应性)有关,另一个与热性能(热顺应性或温度变化)有关。为了解决优化问题,我们提出了一种有效的设计变量更新方案,该方案是在Zhang等人的Zhang-Paulino-Ramos(ZPR)更新方案的背景下得出的。 (2018)。新的更新方案具有解决具有任意数量的体积约束的非自伴拓扑优化问题的能力,可以将其强加于候选材料的子集,设计域的子区域或两者的结合。我们提供了几个示例,探讨了该配方获得候选帕累托前沿和设计用于增材制造的支撑结构的能力。通过ZPR更新方案,我们能够通过区域体积约束来控制支撑结构的复杂性和长度尺度。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号