...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Improved treatment of wall boundary conditions for a particle method with consistent spatial discretization
【24h】

Improved treatment of wall boundary conditions for a particle method with consistent spatial discretization

机译:具有连续空间离散化的粒子方法的壁边界条件的改进处理

获取原文
获取原文并翻译 | 示例

摘要

In recent years, consistent spatial discretization schemes for meshfree particle methods to numerically simulate incompressible flow have been studied by many researchers. This study is focused on the treatment of solid wall boundary conditions for one of those schemes, namely the least squares MPS (LSMPS) scheme, and proposes a new technique to deal with no-slip and free-slip wall boundary conditions. With the proposed treatment, wall geometries are expressed by surface meshes, i.e. polygons in 3D and line segments in 2D. Thus, complicated geometries can be handled easily. Based on a Taylor series expansion, wall boundary conditions are incorporated into the differential operators acting on fluid particles located in the vicinity of a wall, through a least squares approach. As a consequence, Neumann boundary conditions can be treated quite efficiently. To verify consistency of the proposed discretization scheme, a convergence study was carried out. As numerical examples, Couette flow, plane Poiseuille flow, gravity-driven flow in a 3D square duct, a rigid rotation problem, Taylor-Green vortices and lid-driven cavity flow have been calculated using the proposed boundary treatment, with both no-slip and free-slip conditions applied. As a result, the present method agreed well with the reference solutions, which verified its computational accuracy. (C) 2019 Elsevier B.V. All rights reserved.
机译:近年来,许多研究人员研究了用于无网格粒子方法的数值模拟不可压缩流的一致空间离散方案。这项研究的重点是针对其中一种方案,即最小二乘MPS(LSMPS)方案,对固体壁边界条件的处理,并提出了一种处理无滑移壁和自由滑移壁边界条件的新技术。通过提出的处理方法,墙的几何形状由表面网格表示,即3D中的多边形和2D中的线段。因此,可以容易地处理复杂的几何形状。基于泰勒级数展开,通过最小二乘法将壁边界条件合并到作用于壁附近流体粒子的微分算子中。结果,可以相当有效地处理诺伊曼边界条件。为了验证所提出的离散化方案的一致性,进行了收敛研究。作为数值示例,已经使用拟议的边界处理方法计算了Couette流,平面Poiseuille流,3D方管中的重力驱动流,刚性旋转问题,Taylor-Green涡旋和盖驱动腔流,并且均具有防滑以及适用的防滑条件。结果,本方法与参考解决方案吻合良好,证明了其计算精度。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号