首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Preconditioning immersed isogeometric finite element methods with application to flow problems
【24h】

Preconditioning immersed isogeometric finite element methods with application to flow problems

机译:预处理浸入式等几何有限元方法及其在流动问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

Immersed finite element methods generally suffer from conditioning problems when cut elements intersect the physical domain only on a small fraction of their volume. We present a dedicated Additive-Schwarz preconditioner that targets the underlying mechanism causing the ill-conditioning of these methods. This preconditioner is applicable to problems that are not symmetric positive definite and to mixed problems. We provide a motivation for the construction of the Additive-Schwarz preconditioner, and present a detailed numerical investigation into the effectiveness of the preconditioner for a range of mesh sizes, isogeometric discretization orders, and partial differential equations, among which the Navier-Stokes equations. (C) 2019 Elsevier B.V. All rights reserved.
机译:当切割元素仅在其体积的一小部分上与物理区域相交时,浸入式有限元方法通常会遇到条件问题。我们提出了专用的添加剂-施瓦兹预处理器,其针对导致这些方法不适的潜在机制。该预处理器适用于非对称正定问题和混合问题。我们为构造加法-施瓦茨预处理器提供了动力,并针对一系列网格尺寸,等几何离散阶数和偏微分方程(其中包括Navier-Stokes方程),对预处理器的有效性进行了详细的数值研究。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号