首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A novel face-on-face contact method for nonlinear solid mechanics
【24h】

A novel face-on-face contact method for nonlinear solid mechanics

机译:非线性固体力学的一种新型的面对面接触方法

获取原文
获取原文并翻译 | 示例

摘要

The efficient solution of quasistatic contact problems in nonlinear solid mechanics continues to pose some challenges. Traditional node-to-segment methods are not guaranteed to pass the contact patch test, and exhibit non-smooth contact behavior in the presence of sliding. More recent mortar-based methods, which resolve contact interactions over local facet-pairs and typically feature an integral-form gap constraint, result in a more robust treatment of contact in the presence of geometric nonlinearities and large sliding. However, these methods usually require designation of one surface for the interpolation of contact quantities, and are therefore biased. Moreover, reliable iterative solution in the presence of contact constraints remains a challenge for all implicit contact methods. This work presents an unbiased face-on-face contact method using a median-plane methodology and an integral-form gap constraint. The method additionally features a novel subcycle iterative solution strategy that exhibits reliable and efficient convergence performance, even in the presence of large sliding and curved contacting surfaces. Performance of the method is demonstrated through a suite of nonlinear quasi-static contact problems. Published by Elsevier B .V.
机译:非线性固体力学中准静态接触问题的有效解决仍然面临一些挑战。传统的节点到段方法不能保证通过接触斑块测试,并且在存在滑动的情况下会表现出不平滑的接触行为。最近的基于灰浆的方法解决了局部刻面对之间的接触相互作用,并且通常具有整数形式的间隙约束,可在存在几何非线性和较大滑动的情况下对接触进行更可靠的处理。然而,这些方法通常需要指定一个表面用于内插接触量,因此存在偏差。此外,在存在接触约束的情况下,可靠的迭代解决方案仍然是所有隐式接触方法所面临的挑战。这项工作提出了一种使用中间平面方法和整数形式的间隙约束的无偏面接触方法。该方法还具有新颖的子周期迭代解决方案策略,即使在存在较大的滑动和弯曲接触表面的情况下,该策略仍具有可靠且有效的收敛性能。通过一系列非线性准静态接触问题证明了该方法的性能。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号