首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Weak imposition of constraints for structural membranes in transient geometrically nonlinear isogeometric analysis on multipatch surfaces
【24h】

Weak imposition of constraints for structural membranes in transient geometrically nonlinear isogeometric analysis on multipatch surfaces

机译:在多面体表面上进行瞬态几何非线性等几何分析的结构膜约束的弱加法

获取原文

摘要

Membranes have been extensively used for the design of architectural and general structural models due to their low cost and high load carrying capacity. Traditionally such models were discretized using the standard low order Finite Element Method (REM) which typically results in a compromised description of the geometry. However, the accurate geometric description of membrane structures is essential as for instance bifurcation points in geometrically nonlinear analysis may be inaccurately predicted when the geometric description of the model is not accurate enough. Moreover, the design of membrane structures typically requires several cycles of form-finding and subsequent structural analysis under various loads which can benefit from a direct connection to the Computer-Aided Design (CAD) environment using its exact geometric description. In this contribution, the form-finding analysis using the Updated Reference Strategy (URS) and the geometrically nonlinear transient analysis of membranes is extended to Isogeometric Analysis (IGA) on multipatch surfaces with Non-Uniform Rational B-Splines (NURBS). As typical in IGA for real CAD geometries, multiple patches with non-matching parametrizations are considered and therefore the continuity of the solution field along with the application of weak Dirichlet boundary conditions need to be addressed. Thus, four different constraint enforcement methods are elaborated and compared, namely, the Penalty, the Lagrange Multipliers, the augmented Lagrange Multipliers and a Nitsche-type method. For the latter method, a solution dependent stabilization approach is employed in order to render the Nitsche-type method coercive. All methods are elaborated and systematically compared in both form-finding analysis, whenever necessary, and subsequently in geometrically nonlinear transient analysis. It should be noted that the Nitsche-type method is more computationally demanding amongst these methods due to the additional nonlinear terms. However, the results suggest that the Nitsche-type method is advantageous for these kinds of problems as no parameter or discretization other than the isogeometric discretization within each patch needs to be specified prior to the analysis. (C) 2019 Elsevier B.V. All rights reserved.
机译:由于薄膜的低成本和高承载能力,其已被广泛用于建筑和一般结构模型的设计。传统上,此类模型是使用标准的低阶有限元方法(REM)离散化的,该方法通常会破坏几何图形的描述。但是,膜结构的精确几何描述至关重要,因为例如当模型的几何描述不够精确时,可能会不准确地预测几何非线性分析中的分叉点。此外,膜结构的设计通常需要在各种载荷下进行数个查找和后续结构分析的循环,这可以通过使用其精确的几何描述直接连接到计算机辅助设计(CAD)环境中而受益。在此贡献中,使用更新的参考策略(URS)的膜发现分析和膜的几何非线性瞬态分析被扩展为具有非均匀有理B样条(NURBS)的多面体表面的等几何分析(IGA)。作为IGA中实际CAD几何图形的典型特征,考虑了具有不匹配参数化的多个面片,因​​此需要解决溶液场的连续性以及弱Dirichlet边界条件的应用。因此,阐述并比较了四种不同的约束执行方法,即罚分,拉格朗日乘数,增广拉格朗日乘数和尼采型方法。对于后一种方法,采用依赖于解决方案的稳定化方法,以使Nitsche型方法具有强制性。在必要时在寻形分析中以及随后在几何非线性瞬态分析中都详细阐述并系统地比较了所有方法。应该注意的是,由于这些额外的非线性项,在这些方法中,尼采型方法的计算要求更高。但是,结果表明,对于分析这类问题,Nitsche型方法是有利的,因为在分析之前无需指定每个补丁中的等几何离散化以外的参数或离散化。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号