首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A coupled finite volume method and Gilbert-Johnson-Keerthi distance algorithm for computational fluid dynamics modelling
【24h】

A coupled finite volume method and Gilbert-Johnson-Keerthi distance algorithm for computational fluid dynamics modelling

机译:耦合有限体积法与吉尔伯特-约翰逊-基尔希距离算法的流体动力学建模

获取原文
获取原文并翻译 | 示例

摘要

We investigate a novel technique to obtain the mesh porosity (volume and area) based on the Gilbert-Johnson-Keerthi (GJK) distance algorithm for flow modelling. The GJK algorithm is used to check collisions between two convex objects. This concept is applied to check the collision between an element of the computational mesh and the geometrical model where the element of the mesh is broken recursively to obtain refined values of the porosity. The approach has demonstrated that it can handle complex geometries within feasible computational time. The porosity values obtained using this methodology are coupled in the developed Navier-Stokes. Numerical findings are compared with selected benchmarking tests. Numerical findings agree with experimental data and the main features of the fluid flow are well captured. (C) 2019 Elsevier B.Y. All rights reserved.
机译:我们研究了一种基于Gilbert-Johnson-Keerthi(GJK)距离算法进行流动建模的方法以获得网格孔隙率(体积和面积)。 GJK算法用于检查两个凸对象之间的碰撞。此概念适用于检查计算网格的元素与几何模型之间的碰撞,在几何模型中,网格的元素被递归破坏以获得孔隙率的精确值。该方法表明,它可以在可行的计算时间内处理复杂的几何图形。使用这种方法获得的孔隙率值与发达的Navier-Stokes耦合。将数值结果与选定的基准测试进行比较。数值结果与实验数据一致,流体流动的主要特征被很好地捕获。 (C)2019 Elsevier B.Y.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号