首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Model order reduction for large-scale structures with local nonlinearities
【24h】

Model order reduction for large-scale structures with local nonlinearities

机译:具有局部非线性的大型结构模型降阶

获取原文
获取原文并翻译 | 示例

摘要

In solid mechanics, linear structures often exhibit (local) nonlinear behavior when close to failure. For instance, the elastic deformation of a structure becomes plastic after being deformed beyond recovery. To properly assess such problems in a real-life application, we need fast and multi-query evaluations of coupled linear and nonlinear structural systems, whose approximations are not straight forward and often computationally expensive. In this work, we propose a linear-nonlinear domain decomposition, where the two systems are coupled through the solutions on a prescribed linear-nonlinear interface. After necessary sensitivity analysis, e.g. for structures with a high dimensional parameter space, we adopt a non-intrusive method, e.g. Gaussian processes regression (GPR), to solve for the solution on the interface. We then utilize different model order reduction techniques to address the linear and nonlinear problems individually. To accelerate the approximation, we employ again the non-intrusive GPR for the nonlinearity, while intrusive model order reduction methods, e.g. the conventional reduced basis (RB) method or the static-condensation reduced-basis-element (SCRBE) method, are employed for the solution in the linear subdomain. The proposed method is applicable for problems with pre-determined linear-nonlinear domain decomposition. We provide several numerical examples to demonstrate the effectiveness of our method. (C) 2019 Elsevier B.V. All rights reserved.
机译:在固体力学中,接近失效时,线性结构通常表现出(局部)非线性行为。例如,结构的弹性变形在变形至无法恢复之后变为塑性。为了在实际应用中正确评估此类问题,我们需要对线性和非线性耦合结构系统进行快速且多查询的评估,其逼近度并非直截了当,而且在计算上通常很昂贵。在这项工作中,我们提出了线性-非线性域分解,其中两个系统通过规定的线性-非线性接口上的解耦合。经过必要的敏感性分析后,例如对于具有高维参数空间的结构,我们采用非侵入式方法,例如高斯过程回归(GPR),以解决界面上的问题。然后,我们利用不同的模型降阶技术分别解决线性和非线性问题。为了加快逼近速度,我们再次对非线性采用非侵入式GPR,而侵入式模型降阶方法例如线性子域中的解采用了传统的还原基(RB)方法或静电冷凝还原基元(SCRBE)方法。所提出的方法适用于具有预定线性-非线性域分解的问题。我们提供了几个数值示例来证明我们方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号