首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Multi-patch isogeometric analysis for Kirchhoff-Love shell elements
【24h】

Multi-patch isogeometric analysis for Kirchhoff-Love shell elements

机译:Kirchhoff-Love壳单元的多面片等几何分析

获取原文
获取原文并翻译 | 示例

摘要

We formulate a methodology to enforce interface conditions preserving higher-order continuity across the interface. Isogeometrical methods (IGA) naturally allow us to deal with equations of higher-order omitting the usage of mixed approaches. For multi-patch analysis of Kirchhoff-Love shell elements, G 1 continuity at the interface is required and serve here as a prototypical example for a higher-order coupling conditions. When working with this class of shell elements, two different types of constraints arise: Higher-order Dirichlet conditions and higher-order patch coupling conditions. A basis modification approach is presented here, based on a least-square formulation and the incorporation of the constraints into the IGA approximation space. An alternative formulation using Lagrange multipliers which are statically condensed via a discrete Null-Space method provides additional insight into the proposed formulation. A detailed comparison with a classical mortar approach shows the similarities and differences. Eventually, numerical examples demonstrate the capabilities of the presented formulation. (C) 2019 Elsevier B.Y. All rights reserved.
机译:我们制定了一种方法来强制执行接口条件,以保持整个接口的高阶连续性。等几何方法(IGA)自然使我们能够处理高阶方程,而无需使用混合方法。对于Kirchhoff-Love壳单元的多面体分析,界面处的G 1连续性是必需的,在此用作高阶耦合条件的原型示例。当使用此类壳体元素时,会出现两种不同类型的约束:高阶Dirichlet条件和高阶面片耦合条件。在此基于最小二乘公式以及将约束合并到IGA近似空间中,提出了一种基本的修改方法。使用通过离散Null-Space方法静态压缩的拉格朗日乘数的替代公式,可以进一步了解所提议的公式。与经典砂浆方法的详细比较显示出异同。最终,数值示例证明了所提出配方的功能。 (C)2019 Elsevier B.Y.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号