首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A WENO finite-difference scheme for a new class of Hamilton-Jacobi equations in nonlinear solid mechanics
【24h】

A WENO finite-difference scheme for a new class of Hamilton-Jacobi equations in nonlinear solid mechanics

机译:非线性固体力学中一类新的Hamilton-Jacobi方程的WENO有限差分格式

获取原文
获取原文并翻译 | 示例

摘要

This paper puts forth a high-order weighted essentially non-oscillatory (WENO) finite-difference scheme to numerically generate the viscosity solution of a new class of Hamilton-Jacobi (HJ) equations that has recently emerged in nonlinear solid mechanics. The solution W of the prototypical version of the HJ equations considered here corresponds physically to the homogenized free energy that describes the macroscopic magneto-electro-elastic response of a general class of two-phase particulate composite materials under arbitrary quasi-static finite deformations, electric fields, and magnetic fields in N = 2, 3 dimensions. An important mathematical implication of its physical meaning is that W - although it may exhibit steep gradients - is expected to be at least twice continuously differentiable. This is in contrast to the viscosity solutions of the majority of HJ equations that have appeared in other scientific disciplines, which are merely Lipschitz continuous. Three other defining mathematical features that differentiate this new class of HJ equations from most of the existing HJ equations in the literature are that: (i) their "space" variables are defined over non-periodic unbounded or semi-unbounded domains, (ii) their Hamiltonians depend explicitly on all variables, namely, on the "space" and "time" variables, the "space" derivatives of W, and on the function W itself, and (iii) in general, their integration in "time" needs to be carried out over very long "times". The proposed WENO scheme addresses all these features by incorporating a high-order accurate treatment of the boundaries of the domains of computation and by employing a high-order accurate explicit Runge-Kutta "time" integration that remains stable over very large "time" integration ranges. The accuracy and convergence properties of the proposed scheme are demonstrated by direct comparison with a simple explicit solution W available for the case when the general HJ equation is specialized to model the elastic response of isotropic porous Gaussian elastomers. Finally, for showcasing purposes, the scheme is deployed to probe the magneto-elastic response of a novel class of magnetorheological elastomers filled with ferrofluid inclusions. (C) 2019 Elsevier B. V. All rights reserved.
机译:提出了一种高阶加权基本非振荡(WENO)有限差分方案,以数值方式生成最近在非线性固体力学中出现的一类新型Hamilton-Jacobi(HJ)方程的粘度解。这里考虑的HJ方程的原型版本的解W物理上对应于均匀化的自由能,该自由能描述了一般类两相颗粒复合材料在任意准静态有限变形,电作用下的宏观磁电弹性响应。磁场和N = 2、3维的磁场。其物理意义的一个重要的数学含义是,尽管W可能表现出陡峭的梯度,但它至少要连续两次可微。这与其他科学学科中出现的大多数HJ方程的粘度解相反,这些学科只是Lipschitz连续的。将这种新型的HJ方程与文献中大多数现有的HJ方程区分开来的另外三个定义数学特征是:(i)它们的“ space”变量是在非周期无界或半无界域上定义的,( ii)它们的哈密顿量显式依赖于所有变量,即“ space ”和“ time ”变量,W的“ space ”导数以及函数W本身,并且(iii)通常,它们在“时间”中的集成需要进行很长时间的“时间”。提出的WENO方案通过结合对计算域边界的高阶精确处理以及采用在非常大的范围内保持稳定的高阶精确显式Runge-Kutta“时间”积分来解决所有这些特征。时间”积分范围。通过与简单的显式解W进行直接比较,证明了所提方案的准确性和收敛性。在一般的HJ方程专门用于模拟各向同性多孔高斯弹性体的弹性响应时,可以使用简单的显式解W。最后,出于展示目的,该方案用于探测填充铁磁流体夹杂物的新型磁流变弹性体的磁弹性响应。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号