首页> 外文期刊>Applied numerical mathematics >A third-order WENO scheme based on exponential polynomials for Hamilton-Jacobi equations
【24h】

A third-order WENO scheme based on exponential polynomials for Hamilton-Jacobi equations

机译:基于汉密尔顿 - Jacobi方程指数多项式的三阶WENO方案

获取原文
获取原文并翻译 | 示例

摘要

In this study, we provide a novel third-order weighted essentially non-oscillatory (WENO) method to solve Hamilton-Jacobi equations. The key idea is to incorporate exponential polynomials to construct numerical fluxes and smoothness indicators. First, the new smoothness indicators are designed by using the finite difference operator annihilating exponential polynomials such that singular regions can be distinguished from smooth regions more efficiently. Moreover, to construct numerical flux, we employ an interpolation method based on exponential polynomials which yields improved results around steep gradients. The proposed scheme retains the optimal order of accuracy (i.e., three) in smooth areas, even near the critical points. To illustrate the ability of the new scheme, some numerical results are provided along with comparisons with other WENO schemes.
机译:在这项研究中,我们提供了一种新的三阶加权基本上非振荡(Weno)方法来解决汉密尔顿 - 雅各比方程。关键思想是掺入指数多项式来构建数值助熔剂和平滑度指示器。首先,新的平滑度指示器通过使用有限差分操作员湮灭指数多项式来设计,使得可以更有效地与平滑区域区分开奇异区域。此外,为了构建数值通量,我们采用基于指数多项式的插值方法,其产生陡峭梯度的改善结果。拟议方案在光滑区域中保持精度(即三个)的最佳顺序,甚至在关键点附近。为了说明新方案的能力,提供了一些数值结果以及与其他Weno方案的比较提供。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号