首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >The fraction of overlapping interphase around 2D and 3D polydisperse non-spherical particles: Theoretical and numerical models
【24h】

The fraction of overlapping interphase around 2D and 3D polydisperse non-spherical particles: Theoretical and numerical models

机译:2D和3D多分散非球形粒子周围相的重叠分数:理论和数值模型

获取原文
获取原文并翻译 | 示例

摘要

The fraction of interphase is an important microstructure parameter in the prediction of macroscopic properties of particulate composites. Currently, some researchers have presented theoretical and numerical investigations on the interphase fraction for spherical particle systems, and even quantify the influence of interphase fraction on the overall elastic and transport properties of particulate composites. However, the overlapping interphase fraction in polydisperse non-spherical particle systems is still an open issue. In this work, a generic theoretical model is formulated to derive the overlapping interphase fraction for polydisperse 2D non-circular and 3D non-spherical particle systems by means of the statistical geometry of composites. In this model, the morphology of interphase coated onto the surface of non-spherical particles can be characterized by circularity and sphericity of particles that are important parameters to describe the shape of particles. On the other hand, numerical simulations for the one-point probability function of interphase are presented to verify the proposed theoretical framework. In the numerical simulations, a novel algorithm is developed by reducing the problem of identifying the precise location between an arbitrary spatial point and interphase to the basic issue of finding the distance from the point to the surface of particles. If the distance is less than the interphase thickness, the point definitely locates inside interphase. In addition, the algorithm can be further used to detect the overlap between adjacent ellipsoidal particles (2D ellipses). Moreover, a variety of particle shapes (such as regular polygons and ellipses with the same circularity, and regular polyhedrons and ellipsoids with the same sphericity) are taken into account to generate particle packing structures. Then, the fraction of overlapping interphase in each packing structure is statistically obtained. Results show that statistical values are consistent with their theoretical values under the same conditions. This validates the reliability of the theoretical framework. Finally, the effects of particle size distributions and interphase thicknesses on the interphase fraction are investigated. It can be found that the interphase fraction increases with the increase of particle volume fraction, particle fineness and interphase thickness. (C) 2018 Elsevier B.V. All rights reserved.
机译:在预测颗粒复合材料的宏观性能时,相间分数是重要的微观结构参数。目前,一些研究人员已经提出了关于球形颗粒体系相间分数的理论和数值研究,甚至量化了相间分数对颗粒复合材料整体弹性和传输性能的影响。然而,在多分散非球形颗粒体系中相交部分的重叠仍然是一个未解决的问题。在这项工作中,建立了一个通用的理论模型,通过复合材料的统计几何形状,得出了多分散的2D非圆形和3D非球形粒子系统的重叠相分数。在该模型中,可以通过颗粒的圆形度和球形度来表征涂覆到非球形颗粒表面上的相间形态,这是描述颗粒形状的重要参数。另一方面,提出了相间单点概率函数的数值模拟,以验证所提出的理论框架。在数值模拟中,通过将识别任意空间点和界面之间的精确位置的问题减少到找到从点到粒子表面的距离这一基本问题,从而开发了一种新颖的算法。如果距离小于相间厚度,则该点肯定位于相间内部。另外,该算法还可以用于检测相邻的椭圆形粒子(2D椭圆形)之间的重叠。此外,考虑了各种粒子形状(例如具有相同圆形度的规则多边形和椭圆形,以及具有相同球形度的规则多面体和椭圆形)以生成粒子堆积结构。然后,统计地获得每个堆积结构中相间重叠的分数。结果表明,统计值与相同条件下的理论值一致。这验证了理论框架的可靠性。最后,研究了粒度分布和相间厚度对相间分数的影响。可以发现,相间分数随颗粒体积分数,颗粒细度和相间厚度的增加而增加。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号