首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis.Ⅱ: The incompressible Navier-Stokes equations
【24h】

Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis.Ⅱ: The incompressible Navier-Stokes equations

机译:正确地稳定配方的能量演化:通过动态正交小尺度法和等几何分析来分析VMS,SUPG和GLS之间的关系。Ⅱ:不可压缩的Navier-Stokes方程

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the construction of novel stabilized finite element methods in the convective–diffusive context that exhibit correct-energy behavior. Classical stabilized formulations can create unwanted artificial energy. Our contribution corrects this undesired property by employing the concepts of dynamic as well as orthogonal small-scales within the variational multiscale framework (VMS). The desire for correct energy indicates that the large- and small-scales should beH01-orthogonal. Using this orthogonality the VMS method can be converted into the streamline-upwind Petrov–Galerkin (SUPG) or the Galerkin/least-squares (GLS) method. Incorporating both large- and small-scales in the energy definition asks for dynamic behavior of the small-scales. Therefore, the large- and small-scales are treated as separate equations.Two consistent variational formulations which depict correct-energy behavior are proposed: (i) the Galerkin/least-squares method with dynamic small-scales (GLSD) and (ii) the dynamic orthogonal formulation (DO). The methods are presented in combination with an energy-decaying generalized-αtime-integrator. Numerical verification shows that dissipation due to the small-scales in classical stabilized methods can become negative, on both a local and a global scale. The results show that without loss of accuracy the correct-energy behavior can be recovered by the proposed methods. The computations employ NURBS-based isogeometric analysis for the spatial discretization.
机译:本文介绍了在对流-扩散环境中表现出正确能量行为的新型稳定有限元方法的构造。经典的稳定配方会产生不需要的人造能量。我们的贡献通过在变分多尺度框架(VMS)中采用动态以及正交小尺度的概念来纠正这种不良特性。对正确能量的渴望表明,大尺度和小尺度应该是H01正交的。使用这种正交性,可以将VMS方法转换为流线上风的Petrov-Galerkin(SUPG)或Galerkin /最小二乘(GLS)方法。在能量定义中同时包含大尺度和小尺度都要求小尺度的动态行为。因此,将大尺度和小尺度视为单独的方程式。提出了两种描述正确能量行为的一致变分公式:(i)具有动态小尺度的Galerkin /最小二乘法(GLSD)和(ii)动态正交公式(DO)。结合能量衰减的广义α时间积分器介绍了这些方法。数值验证表明,由于经典稳定方法的小规模耗散,在局部和全局范围内都可能变为负值。结果表明,在不损失准确性的情况下,所提出的方法可以恢复正确的能量行为。这些计算采用基于NURBS的等几何分析进行空间离散化。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号