首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A scalable solution strategy for high-order stabilized finite-element solvers using an implicit line preconditioner
【24h】

A scalable solution strategy for high-order stabilized finite-element solvers using an implicit line preconditioner

机译:使用隐式线预处理器的高阶稳定有限元求解器的可扩展解决方案策略

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a robust, efficient, and strongly scalable solution methodology for simulation of complex turbulent flows on unstructured grids. The compressible Reynolds averaged Navier-Stokes (RANS) equations and the negative Spalart-Allmaras (SA) turbulence model are discretized, in coupled form, using a Streamline Upwind Petrov-Galerkin (SUPG) scheme. The time integration is fully implicit, and the discretized equations are advanced towards a steady-state solution using a pseudo-transient continuation (PTC). For solution of the linearized systems, a preconditioned Krylov solver is used. Seeking robustness, Krylov solvers are commonly preconditioned using incomplete factorization methods such as ILU(k). However, these methods are neither memory efficient, nor strongly scalable. To provide a better alternative, the implicit line solution method, which has been traditionally used in finite-volume methods, is revised and enhanced to solve stiffer linear systems. In the developed method, the lines are generated using a matrix-based approach, which connects the strongly-coupled unknowns. In addition, to improve the robustness of the line solver for high-CFL systems, a dual-CFL strategy, with a lower CFL number in the preconditioner matrix, is developed. Also, it is shown that for high-order continuous finite-element discretizations, the interconnections of the degrees of freedom on a line form a banded matrix which is wider than tridiagonal, but still can be factorized completely without generating any fill-ins. The developed line preconditioner is strongly scalable and, in contrast to the ILU factorization, its convergence behavior does not depend on the number of partitions. Two three-dimensional numerical examples are presented in which the performance of the line preconditioner is compared with that of the ILU(k) preconditioner. This comparison shows that, in addition to robustness improvements, the line preconditioner offers significant benefits in terms of memory efficiency. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文提出了一种健壮,高效且可扩展性强的解决方案方法,用于模拟非结构化网格上的复杂湍流。使用流线上风Petrov-Galerkin(SUPG)方案以耦合形式离散可压缩的雷诺平均Navier-Stokes(RANS)方程和负Spalart-Allmaras(SA)湍流模型。时间积分是完全隐式的,并且使用伪瞬态连续(PTC)将离散方程式推向稳态解决方案。对于线性化系统的求解,使用了预处理的Krylov求解器。为了寻求鲁棒性,通常使用不完全分解方法(例如ILU(k))对Krylov求解器进行预处理。但是,这些方法既没有内存效率,也没有很强的可伸缩性。为了提供更好的替代方案,对在有限体积方法中传统使用的隐式线求解方法进行了修改和增强,以解决更严格的线性系统。在开发的方法中,使用基于矩阵的方法生成线,该方法将强耦合的未知数连接起来。另外,为了提高用于高CFL系统的线求解器的鲁棒性,开发了在预调节器矩阵中具有较低CFL数的双CFL策略。此外,还表明,对于高阶连续有限元离散化,直线上自由度的互连形成一个带状矩阵,该带状矩阵比三对角线宽,但仍然可以完全分解而不会产生任何填充。所开发的行预处理器具有高度可伸缩性,并且与ILU分解相反,其收敛行为不取决于分区数。给出了两个三维数值示例,其中将线路预处理器的性能与ILU(k)预处理器的性能进行了比较。这种比较表明,除了提高鲁棒性外,行预调节器还具有显着的存储器效率优势。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号