首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A polynomial expansion approach for response analysis of periodical composite structural-acoustic problems with multi-scale mixed aleatory and epistemic uncertainties
【24h】

A polynomial expansion approach for response analysis of periodical composite structural-acoustic problems with multi-scale mixed aleatory and epistemic uncertainties

机译:具有多重不确定性和认知不确定性的周期复合结构声学问题响应分析的多项式展开方法

获取原文
获取原文并翻译 | 示例

摘要

The response analysis of periodical composite structural-acoustic problem with multi-scale mixed aleatory and epistemic uncertainties is investigated based on homogenization method in this paper. The aleatory uncertainties are presented by bounded random variables, whereas the epistemic uncertainties are presented by interval variables and evidence variables. When dealing with the combination of bounded random variables, interval variables and evidence variables, enormous computation is needed to estimate the output probability bounds of the sound pressure response of the periodical composite structural-acoustic system. To reduce the involved computational cost but without losing accuracy, by transforming all of the bounded random variables and interval variables into evidence variables appropriately, an evidence-theory-based polynomial expansion method (EPEM) is developed in which the Gegenbauer series expansion is employed to approximate the variation range of the response with respect to evidence variables. By using EPEM, the probability bounds of the response can be obtained efficiently. A numerical example is used to validate the proposed method and two engineering examples are given to demonstrate its efficiency. (C) 2018 Elsevier B.V. All rights reserved.
机译:基于均质化方法,研究了具有多种不确定性和认知混合不确定性的周期复合结构声学问题的响应分析。偶然不确定性由有界随机变量表示,而认知不确定性由区间变量和证据变量表示。当处理有界随机变量,区间变量和证据变量的组合时,需要大量的计算来估计周期复合结构声系统的声压响应的输出概率边界。为减少计算量但又不损失准确性,通过将所有有界随机变量和区间变量适当地转换为证据变量,开发了基于证据理论的多项式展开方法(EPEM),其中采用了Gegenbauer级数展开估计响应相对于证据变量的变化范围。通过使用EPEM,可以有效地获得响应的概率边界。数值算例验证了所提方法的有效性,并通过两个工程实例证明了该方法的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号