首页> 外文期刊>Computer Languages, Systems & Structures >Coding Ants: Optimization of GPU code using ant colony optimization
【24h】

Coding Ants: Optimization of GPU code using ant colony optimization

机译:编码蚂蚁:使用蚁群优化来优化GPU代码

获取原文
获取原文并翻译 | 示例

摘要

This article proposes the Coding Ants framework, an approach for auto-tuning which uses ant colony optimization to find a sequence of code optimizations for GPU architectures. The proposed framework is built as an extension to the PPCG compiler, a source-to-source code generator based on the polyhedral model and specializing in the generation of CUDA code. As such, the Coding Ants framework is able to use the polyhedral abstraction to represent a large space of possible transformations. Several optimizations are also presented which have not been included in any previous GPU auto-tuning system. The proposed framework also extends the traditional ant colony optimization algorithm to include performance metrics as well as a regression tree analysis to segment the search space. We evaluate the framework on the PolyBench suite and compare the performance of three levels of optimization that transfer increasing control to the Coding Ants framework from the PPCG cost model.
机译:本文提出了Coding Ants框架,这是一种自动调整的方法,该方法使用蚁群优化来找到针对GPU架构的一系列代码优化。提出的框架是PPCG编译器的扩展,PPCG编译器是基于多面体模型的源代码到源代码生成器,专门用于CUDA代码的生成。这样,Coding Ants框架能够使用多面体抽象来表示可能的转换的很大空间。还介绍了一些优化,这些优化未包含在任何以前的GPU自动调整系统中。提出的框架还扩展了传统的蚁群优化算法,使其包括性能指标以及用于对搜索空间进行细分的回归树分析。我们评估了PolyBench套件上的框架,并比较了将优化控制权从PPCG成本模型转移到Coding Ants框架的三个优化级别的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号