首页> 外文期刊>Computer and information science >Target Tracking Based on Mean Shift and KALMAN Filter with Kernel Histogram Filtering
【24h】

Target Tracking Based on Mean Shift and KALMAN Filter with Kernel Histogram Filtering

机译:基于均值漂移和核直方图滤波的卡尔曼滤波的目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

Visual object tracking is required in many tasks such as video compression, surveillance, automated video analysis, etc. mean shift algorithm is one of popular methods to this task and has some advantages comparing to other tracking methods. This method would not be appropriate in the case of large target appearance changes and occlusion; therefore target model update could actually improve this method. KALMAN filter is a suitable approach to handle model update. We performed mean shift algorithm with model update ability for tracking in this paper and achieve good results.
机译:视频压缩,监视,自动视频分析等许多任务都需要视觉对象跟踪。均值平移算法是该任务的流行方法之一,与其他跟踪方法相比,具有一些优势。这种方法不适用于较大的目标外观变化和遮挡的情况;因此目标模型更新实际上可以改进此方法。卡尔曼过滤器是处理模型更新的合适方法。本文采用具有模型更新能力的均值漂移算法进行跟踪,取得了良好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号