首页> 外文期刊>Computer Graphics and Applications, IEEE >Real-Time Visualization of Streaming Text with a Force-Based Dynamic System
【24h】

Real-Time Visualization of Streaming Text with a Force-Based Dynamic System

机译:基于力的动态系统实时可视化流文本

获取原文
获取原文并翻译 | 示例

摘要

Streamit lets users explore visualizations of text streams without prior knowledge of the data. It incorporates incoming documents from a continuous source into an existing visualization context with automatic grouping and separation based on document similarities. Streamit generates document clusters to promote better understanding. To obtain different clusterings, users can adjust the keyword importance on the fly. Topic modeling represents the documents with higher-level semantic meanings. System performance has been optimized to achieve instantaneous animated visualization even for very large data collections. A powerful user interface allows in-depth data analysis. The video shows an example of applying our system on 1,000 US National Science Foundation Information and Intelligent Systems award abstracts funded between March 2000 and August 2003. The visual layout consists of a main window (left view), an animation control panel (bottom), control tools (top right), a keyword table (middle right), and document tables (bottom right). Documents are represented by pies whose size conveys the project''s funding. The example shows how clusters of documents are generated and dynamically evolve (move, split, or merge) as new documents are inserted. The simulation places new documents relatively close to similar ones, creating clusters that each have an assigned color. Clusters maintain their colors, which facilitates the visual tracking of their behavior. However, when the system generates new clusters (for example, a cluster splits into two or more clusters), it assigns them unique colors to ease the visual tracking of them as they evolve. For example, in the video, the section from 00:21 to 00:25 shows how the red cluster splits into two clusters: a cluster that keeps the same red color and a new light-blue cluster. Finally, the spiral view (00:32ȁ3;00:35) lets users examine the clusters'' temporal trends.
机译:Streamit使用户无需事先了解数据即可浏览文本流的可视化。它将来自连续来源的传入文档合并到现有的可视化上下文中,并基于文档相似性自动分组和分离。 Streamit生成文档簇以促进更好的理解。为了获得不同的聚类,用户可以随时调整关键字的重要性。主题建模代表具有更高层次语义含义的文档。系统性能已经过优化,即使对于非常大的数据集合,也可以实现瞬时动画可视化。强大的用户界面可进行深入的数据分析。该视频显示了将我们的系统应用于2000年3月至2003年8月资助的1,000份美国国家科学基金会信息和智能系统奖摘要的示例。视觉布局包括主窗口(左视图),动画控制面板(底部),控制工具(右上),关键字表(右中)和文档表(右下)。文件由大小代表项目资金的馅饼代表。该示例说明了如何生成文档簇,并在插入新文档时如何动态演化(移动,拆分或合并)。该模拟将新文档放置在相对接近相似文档的位置,从而创建每个具有指定颜色的群集。群集保持其颜色,这有助于对其行为进行视觉跟踪。但是,当系统生成新的群集时(例如,一个群集拆分为两个或多个群集),它将为它们分配唯一的颜色,以便在它们演变时简化对其的视觉跟踪。例如,在视频中,从00:21到00:25的部分显示了红色簇如何分成两个簇:一个保持相同红色的簇和一个新的浅蓝色簇。最后,螺旋视图(00:32ȁ3; 00:35)使用户可以检查聚类的时间趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号