首页> 外文期刊>IEEE Computer Graphics and Applications >A Classification Method of Oracle Materials Based on Local Convolutional Neural Network Framework
【24h】

A Classification Method of Oracle Materials Based on Local Convolutional Neural Network Framework

机译:基于本地卷积神经网络框架的Oracle材料分类方法

获取原文
获取原文并翻译 | 示例

摘要

The classification of materials of oracle bone is one of the most basic aspects for oracle bone morphology. However, the classification method depending on experts' experience requires long-term learning and accumulation for professional knowledge. This article presents a multiregional convolutional neural network to classify the rubbings of oracle bones. First, we detected the "shield grain" and "tooth grain" on the oracle bone rubbings, then complete the division of multiple areas on an image of oracle bone. Second, the convolutional neural network is used to extract the features of each region and we complete the fusion of multiple local features. Finally, the classification of tortoise shell and animal bone was realized. Utilizing the image of oracle bone provided by experts, we conducted an experiment; the result show our method has better classification accuracy. It has made contributions to the progress of the study of oracle bone morphology.
机译:Oracle Bone的材料的分类是Oracle骨形态的最基本方面之一。然而,根据专家经验的分类方法需要长期学习和积累专业知识。本文介绍了一个多体型卷积神经网络,用于对Oracle Bones的rubbings进行分类。首先,我们在甲骨骨摩擦上检测到“盾纹纹”和“牙齿谷物”,然后完成甲骨骨图像上的多个区域的划分。其次,卷积神经网络用于提取每个区域的特征,我们完成多个本地特征的融合。最后,实现了乌龟壳和动物骨的分类。利用专家提供的Oracle骨骼的图像,我们进行了实验;结果表明我们的方法具有更好的分类准确性。它对Oracle骨形态学的研究进展作出了贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号