首页> 外文期刊>IEEE Computer Graphics and Applications >Improved Panoramic Representation via Bidirectional Recurrent View Aggregation for Three-Dimensional Model Retrieval
【24h】

Improved Panoramic Representation via Bidirectional Recurrent View Aggregation for Three-Dimensional Model Retrieval

机译:通过双向递归视图聚合改进的三维表示,用于三维模型检索

获取原文
获取原文并翻译 | 示例

摘要

In a view-based three-dimensional (3-D) model retrieval task, extracting discriminative high-level features of models from projected images is considered as an effective approach. The challenge of view-based 3-D shape retrieval is that the shape information of each view is limited due to information deficiency in projection. Traditional methods in this direction mostly convert the model into a panoramic view, making it hard to recognize the original shape. To resolve this problem, we propose a novel deep neural network, recurrent panorama network (RePanoNet), which can learn to build panoramic representation from view sequences. A view sequence is rendered at a circle around the model to provide enough panoramic information. For each view sequence, we employ the bidirectional long short-term memory in RePanoNet to recognize spatial correlations between adjacent views to construct a panoramic feature. In our experiments on ModelNet and ShapeNet Core55, RePanoNet outperforms the methods in the state of the art, which demonstrates its effectiveness.
机译:在基于视图的三维(3-D)模型检索任务中,从投影图像中提取模型的可区分高级特征被认为是一种有效的方法。基于视图的3D形状检索的挑战在于,由于投影中的信息不足,每个视图的形状信息受到限制。这个方向的传统方法通常会将模型转换为全景视图,从而难以识别原始形状。为了解决这个问题,我们提出了一种新颖的深度神经网络,即递归全景网络(RePanoNet),该网络可以学习从视图序列构建全景表示。视图序列在模型周围的圆圈处渲染,以提供足够的全景信息。对于每个视图序列,我们在RePanoNet中采用双向长期短期记忆来识别相邻视图之间的空间相关性,以构建全景特征。在我们对ModelNet和ShapeNet Core55进行的实验中,RePanoNet的性能优于现有技术中的方法,从而证明了其有效性。

著录项

  • 来源
    《IEEE Computer Graphics and Applications》 |2019年第2期|65-76|共12页
  • 作者单位

    Beihang Univ, Sch Comp Sci & Engn, Beijing, Peoples R China;

    Beihang Univ, Beijing, Peoples R China;

    Beihang Univ, Beijing, Peoples R China;

    Beihang Univ, Sch Comp Sci & Engn, Beijing, Peoples R China|Beihang Univ Shenzhen, Res Inst, Shenzhen, Peoples R China|Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Shenzhen, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号