首页> 外文期刊>Computer Communications >Sensing network security prevention measures of BIM smart operation and maintenance system
【24h】

Sensing network security prevention measures of BIM smart operation and maintenance system

机译:BIM智能操作维护系统的传感网络安全防治措施

获取原文
获取原文并翻译 | 示例

摘要

With the continuous expansion of network scale and the increasing complexity of attack methods, traditional network security protection equipment has been unable to cope with large-scale network security detection and protection. However, most current operation and maintenance systems cannot reasonably evaluate and predict network security. In order to be able to evaluate and prevent the network security of the bridge BIM intelligent operation and maintenance system under the background of big data, this paper uses the KDD Cup99 data set and the network attack data in the bridge BIM network environment to simulate the method proposed in this paper. The comparison results verify that the network security risk perception method proposed in this paper can realize network security risk perception more accurately and efficiently. This paper proposes a data mining method based on Bayesian network algorithm to evaluate the risk value of the bridge BIM intelligent operation and maintenance system. During the period from 0 to 110 min, the network risk value increased from 0.003 to 0.91. It can be seen that with the deepening of the attack phase, the degree of network risk will also increase. This paper uses the detection rate, false negative rate, false positive rate, AUC and other indicators to conduct simulation experiments on the data prediction-based network security risk prediction algorithm and comparison algorithm proposed in this paper. Simulation experiments show that under the four simulation experiment environments (pl = pe = 0.01/0.15, n = 20/50), the AUC of this scheme is increased by 0.018, 0.053, 0.008 and 0.11, respectively. The proposed algorithms are better than the comparison algorithms.
机译:随着网络规模的不断扩展和攻击方法的复杂性越来越复杂,传统的网络安全保护设备无法应对大规模的网络安全检测和保护。然而,大多数当前的操作和维护系统不能合理地评估和预测网络安全性。为了能够评估和防止桥梁BIM智能操作和维护系统的网络安全性在大数据的背景下,本文使用KDD Cup99数据集和桥梁BIM网络环境中的网络攻击数据来模拟本文提出的方法。比较结果验证了本文提出的网络安全风险感知方法可以更准确且有效地实现网络安全风险感知。本文提出了一种基于贝叶斯网络算法的数据挖掘方法来评估桥梁BIM智能操作和维护系统的风险价值。在0到110分钟的期间,网络风险值从0.003增加到0.91。可以看出,随着攻击阶段的深化,网络风险的程度也将增加。本文采用检出率,假负速率,假阳性率,AUC和其他指示器对本文提出的基于数据预测的网络安全风险预测算法和比较算法进行仿真实验。仿真实验表明,在四种仿真实验环境下(PL = PE = 0.01 / 0.15,n = 20/50),该方案的AUC分别增加了0.018,0.053,0008和0.11。所提出的算法优于比较算法。

著录项

  • 来源
    《Computer Communications》 |2020年第9期|360-367|共8页
  • 作者单位

    Chongqing Univ Sch Civil Engn Chongqing 400045 Peoples R China|Chongqing Chengtou Rd & Bridge Adm Co Chongqing 400060 Peoples R China;

    Chongqing Univ Sch Civil Engn Chongqing 400045 Peoples R China;

    Chongqing Construct Investment Grp Co Ltd Chongqing 400023 Peoples R China;

    Chongqing Chengtou Rd & Bridge Adm Co Chongqing 400060 Peoples R China;

    Chongqing Chengtou Rd & Bridge Adm Co Chongqing 400060 Peoples R China;

    Chongqing Chengtou Rd & Bridge Adm Co Chongqing 400060 Peoples R China;

    Chongqing Chengtou Rd & Bridge Adm Co Chongqing 400060 Peoples R China;

    Chongqing Chengtou Rd & Bridge Adm Co Chongqing 400060 Peoples R China;

    Chongqing Zidong Construct Engn Grp Co Ltd Chongqing 401122 Peoples R China;

    Chongqing Chengtou Rd & Bridge Adm Co Chongqing 400060 Peoples R China;

    Chongqing Chengtou Rd & Bridge Adm Co Chongqing 400060 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Big data; Bridge BIM; Network attack data; Attack data mining; Network risk assessment; Operation and maintenance system;

    机译:大数据;桥梁BIM;网络攻击数据;攻击数据挖掘;网络风险评估;操作和维护系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号