首页> 外文期刊>Computer Communications >High-performance flow classification using hybrid clusters in software defined mobile edge computing
【24h】

High-performance flow classification using hybrid clusters in software defined mobile edge computing

机译:使用混合集群在软件定义的移动边缘计算中的高性能流分类

获取原文
获取原文并翻译 | 示例

摘要

Mobile Edge Computing (MEC) provides different storage and computing capabilities within the access range of mobile devices. This moderates the burden of offloading compute/storage-intensive processes of the mobile devices to the centralized cloud data centers. As a result, the network latency is reduced and the quality of service provided for the mobile end users is improved. Different applications benefit from the large-scale deployments of MEC servers. However, the considerable complexity of managing large scale deployments of the sheer number of applications for the millions of mobile devices is a challenge. Recently, Software Defined Networking (SDN) is leveraged to resolve the problem by providing unified and programmable interfaces for managing network devices. Most of the current SDN packet processing services are tightly dependent on the packet classification service. This primary service classifies any incoming packet based on matching a set of specific fields of its header against a flow table. Acceleration of this basic process considerably increases the performance of the SDN-based MEC. In this paper, the hierarchical tree algorithm, which is a packet classification method, is parallelized using popular platforms on a cluster of Graphics Processing Units (GPUs), a cluster of Central Processing Units (CPUs), and a hybrid cluster. The best scenario for the parallel implementation of this algorithm on the CPU cluster is that which combines OpenMP and MPI.In this case, the throughput of the classifier is 4.2 million packets per second (MPPS). On the GPU cluster, two different scenarios have been used. In the first scenario, the global memory is used to store the rules and the Hierarchical-trie of the classifier while in the second scenario we break the filter set in a way that the resulting Hierarchical-trie of each subset could be stored in the shared memory of GPU. According to the results, although the first GPU cluster scenario achieves a throughput of 29.19 MPPS and a speedup 58 times as great as the serial mode, the second scenario is 12 times faster due to using the shared memory. The best performance, however, belongs to the hybrid cluster mode. The hybrid cluster achieves a throughput of 30.59 which is 1.4 MPPS more than the GPU cluster.
机译:移动边缘计算(MEC)在移动设备的访问范围内提供不同的存储和计算能力。这适用于将移动设备的计算/存储密集型进程卸载到集中式云数据中心的负担。结果,降低了网络延迟,并且提高了用于移动结束用户提供的服务质量。不同的应用程序受益于MEC服务器的大规模部署。然而,管理大量庞大的应用程序数百万移动设备的大规模部署的相当复杂性是一项挑战。最近,利用软件定义的网络(SDN)来通过提供用于管理网络设备的统一和可编程接口来解决问题。大多数当前的SDN数据包处理服务密切依赖于数据包分类服务。此主服务基于匹配其标题的一组特定字段对流表来分类任何传入数据包。加速这一基本过程大大增加了基于SDN的MEC的性能。在本文中,作为分组分类方法的分层树算法在图形处理单元(GPU)中的流行平台,中央处理单元(CPU)和混合群集的群集上并行化。在CPU群集中,该算法的并行实现的最佳方案是组合OpenMP和MPI.IN的情况下,分类器的吞吐量为每秒420万个数据包(MPPS)。在GPU集群上,已使用两种不同的方案。在第一场景中,全局内存用于存储分类器的规则和分层 - 在第二种场景中,我们以筛选筛选器设置,以一种方式可以存储在共享中的每个子集的结果的分层TRIE GPU的记忆。根据结果​​,虽然第一个GPU群集方案实现了29.19 MPP的吞吐量,并且加速58次与串行模式一样多,但由于使用共享内存,第二种情况是更快的12倍。但是,最佳性能属于混合群集模式。混合群达到30.59的吞吐量,比GPU群集为1.4 MPP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号