首页> 外文期刊>Computer Communications >Cloud-based image processing system with priority-based data distribution mechanism
【24h】

Cloud-based image processing system with priority-based data distribution mechanism

机译:具有基于优先级的数据分发机制的基于云的图像处理系统

获取原文
获取原文并翻译 | 示例

摘要

Most users process short tasks using MapReduce. In other words, most tasks handled by the Map and Reduce functions require low response time. Currently, quite few users use MapReduce for 2D to 3D image processing, which is highly complicated and requires long execution time. However, in our opinion, MapReduce is exactly suitable for processing applications of high complexity and high computation. This paper implements MapReduce on an integrated 2D to 3D multi-user system, in which Map is responsible for image processing procedures of high complexity and high computation, and Reduce is responsible for integrating the intermediate data processed by Map for the final output. Different from short tasks, when several users compete simultaneously to acquire data from MapReduce for 2D to 3D applications, data that waits to be processed by Map will be delayed by the current user and Reduce has to wait until the completion of all Map tasks to generate the final result. Therefore, a novel scheduling scheme, Dynamic Switch of Reduce Function (DSRF) Algorithm, is proposed in this paper for MapReduce to switch dynamically to the next task according to the achieved percentage of tasks and reduce the idle time of Reduce. By using Hadoop to implement our MapReduce platform, we compare the performance of traditional Hadoop with our proposed scheme. The experimental results reveal that our proposed scheduling scheme efficiently enhances MapReduce performance in running 2D to 3D applications.
机译:大多数用户使用MapReduce处理简短任务。换句话说,由Map和Reduce功能处理的大多数任务要求响应时间短。当前,很少有用户使用MapReduce进行2D到3D图像处理,这非常复杂并且需要较长的执行时间。但是,我们认为MapReduce完全适合处理高复杂度和高计算量的应用程序。本文在集成的2D到3D多用户系统上实现MapReduce,其中Map负责高复杂度和高计算量的图像处理过程,而Reduce负责集成Map处理的中间数据以最终输出。与短期任务不同,当多个用户同时竞争从MapReduce进行2D到3D应用程序的数据获取时,等待由Map处理的数据将被当前用户延迟,而Reduce必须等待直到所有Map任务完成才能生成最终结果。因此,本文提出了一种新的调度方案,即约简功能动态切换(DSRF)算法,以使MapReduce根据已实现的任务百分比动态切换到下一个任务,并减少Reduce的空闲时间。通过使用Hadoop来实现我们的MapReduce平台,我们将传统Hadoop的性能与我们提出的方案进行了比较。实验结果表明,我们提出的调度方案可有效提高MapReduce在运行2D到3D应用程序中的性能。

著录项

  • 来源
    《Computer Communications》 |2012年第15期|p.1809-1818|共10页
  • 作者单位

    Institute of Computer Science & Information Engineering, National Ilan University, Taiwan, ROC;

    Department of Electrical Engineering, National Dong Hwa University, Taiwan, ROC;

    Department of Electrical Engineering, Tamkang University, Taiwan, ROC;

    Department of Electrical Engineering, Tamkang University, Taiwan, ROC;

    Institute of Computer Science & Information Engineering, National Ilan University, Taiwan, ROC,Department of Electrical Engineering, National Dong Hwa University, Taiwan, ROC,Department of Electronic Engineering, National Ilan University, Taiwan, ROC;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D image; cloud system; multicast streaming; image processing;

    机译:3D图像;云系统;组播流图像处理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号