首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Data Prefetching and Eviction Mechanisms of In-Memory Storage Systems Based on Scheduling for Big Data Processing
【24h】

Data Prefetching and Eviction Mechanisms of In-Memory Storage Systems Based on Scheduling for Big Data Processing

机译:基于调度的大数据处理内存存储系统数据预取与收回机制

获取原文
获取原文并翻译 | 示例

摘要

In-memory techniques keep data into faster and more expensive storage media for improving performance of big data processing. However, existing mechanisms do not consider how to expedite the data processing applications that access the input datasets only once. Another problem is how to reclaim memory without affecting other running applications. In this paper, we provide scheduling-aware data prefetching and eviction mechanisms based on Spark, Alluxio, and Hadoop. The mechanisms prefetch data and release memory resources based on the scheduling information. A mathematical method is proposed for maximizing the reduction of data access time. To make the mechanisms applicable in large-scale environments, we propose a heuristic algorithm to reduce the computational time. Furthermore, an enhanced version of the heuristic algorithm is also proposed to increase the amount of prefetched data. Finally, we perform real-testbed and simulation experiments to show the effectiveness of the proposed mechanisms.
机译:内存技术将数据保存在更快,更昂贵的存储介质中,以提高大数据处理的性能。但是,现有机制并未考虑如何加快仅访问输入数据集一次的数据处理应用程序。另一个问题是如何在不影响其他正在运行的应用程序的情况下回收内存。在本文中,我们提供了基于Spark,Alluxio和Hadoop的调度感知数据预取和收回机制。这些机制根据调度信息预取数据并释放内存资源。提出了一种数学方法来最大程度地减少数据访问时间。为了使该机制适用于大规模环境,我们提出了一种启发式算法来减少计算时间。此外,还提出了启发式算法的增强版本,以增加预取数据的数量。最后,我们进行了真实的测试和仿真实验,以证明所提出机制的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号