首页> 外文期刊>Computer Communications >A generic statistical approach for spam detection in Online Social Networks
【24h】

A generic statistical approach for spam detection in Online Social Networks

机译:在线社交网络中检测垃圾邮件的通用统计方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a generic statistical approach to identify spam profiles on Online Social Networks (OSNs). Our study is based on real datasets containing both normal and spam profiles crawled from Facebook and Twitter networks. We have identified a set of 14 generic statistical features to identify spam profiles. The identified features are common to both Facebook and Twitter networks. For classification task, we have used three different classification algorithms - naieve Bayes,Jrip, and J48, and evaluated them on both individual and combined datasets to establish the discriminative property of the identified features. The results obtained on a combined dataset has detection rate (DR) as 0.957 and false positive rate (FPR) as 0.048, whereas on Facebook dataset the DR and FPR values are 0.964 and 0.089, respectively, and that on Twitter dataset the DR and FPR values are 0.976 and 0.075, respectively. We have also analyzed the contribution of each individual feature towards the detection accuracy of spam profiles. Thereafter, we have considered 7 most discriminative features and proposed a clustering-based approach to identify spam campaigns on Facebook and Twitter networks.
机译:在本文中,我们提出了一种通用的统计方法来识别在线社交网络(OSN)上的垃圾邮件配置文件。我们的研究基于真实数据集,其中包含从Facebook和Twitter网络抓取的正常和垃圾邮件配置文件。我们已经确定了一套14种通用统计功能来识别垃圾邮件配置文件。所识别的功能对于Facebook和Twitter网络都是通用的。对于分类任务,我们使用了三种不同的分类算法-naieve Bayes,Jrip和J48,并在单个数据集和组合数据集上对其进行了评估,以建立所识别特征的判别属性。在组合数据集上获得的结果具有0.957的检测率(DR)和0.048的误报率(FPR),而在Facebook数据集上的DR和FPR值分别为0.964和0.089,在Twitter数据集上的DR和FPR值分别为0.976和0.075。我们还分析了每个单独功能对垃圾邮件配置文件检测准确性的贡献。此后,我们考虑了7个最有区别的功能,并提出了一种基于聚类的方法来识别Facebook和Twitter网络上的垃圾邮件活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号