首页> 外文期刊>Computer Communications >Referrer Graph: A cost-effective algorithm and pruning method for predicting web accesses
【24h】

Referrer Graph: A cost-effective algorithm and pruning method for predicting web accesses

机译:Referrer Graph:一种用于预测Web访问的经济高效的算法和修剪方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the Referrer Graph (RG) web prediction algorithm and a pruning method for the associated graph as a low-cost solution to predict next web users accesses. RG is aimed at being used in a real web system with prefetching capabilities without degrading its performance. The algorithm learns from users accesses and builds a Markov model. These kinds of algorithms use the sequence of the user accesses to make predictions. Unlike previous Markov model based proposals, the RG algorithm differentiates dependencies in objects of the same page from objects of different pages by using the object URI and the referrer in each request. Although its design permits us to build a simple data structure that is easier to handle and, consequently, needs lower computational cost in comparison with other algorithms, a pruning mechanism has been devised to avoid the continuous growing of this data structure. Results show that, compared with the best prediction algorithms proposed in the open literature, the RG algorithm achieves similar precision values and page latency savings but requiring much less computational and memory resources. Furthermore, when pruning is applied, additional and notable resource consumption savings can be achieved without degrading original performance. In order to reduce further the resource consumption, a mechanism to prune de graph has been devised, which reduces resource consumption of the baseline system without degrading the latency savings.
机译:本文介绍了参照图(RG)Web预测算法和相关图的修剪方法,以此作为预测下一个Web用户访问的低成本解决方案。 RG旨在用于具有预取功能的真实Web系统中,而不会降低其性能。该算法从用户访问中学习并建立马尔可夫模型。这些类型的算法使用用户访问的顺序进行预测。与以前的基于马尔可夫模型的提议不同,RG算法通过在每个请求中使用对象URI和引荐来源网址来区分同一页面的对象与不同页面的对象之间的依赖关系。尽管其设计允许我们构建一个简单的数据结构,该结构易于处理,因此与其他算法相比需要较低的计算成本,但已设计出一种修剪机制来避免此数据结构的持续增长。结果表明,与公开文献中提出的最佳预测算法相比,RG算法可实现相似的精度值并节省页面等待时间,但所需的计算和内存资源却少得多。此外,当应用修剪时,可以实现额外且显着的资源消耗节省,而不会降低原始性能。为了进一步减少资源消耗,已经设计了修剪图的机制,该机制减少了基准系统的资源消耗,而不会降低等待时间的节省。

著录项

  • 来源
    《Computer Communications》 |2013年第8期|881-894|共14页
  • 作者单位

    Department of Computer Engineering, Universidad Politecnica de Valencia, Caminode Vera, s, 46022 Valencia, Spain;

    Department of Computer Engineering, Universidad Politecnica de Valencia, Caminode Vera, s, 46022 Valencia, Spain;

    Department of Computer Engineering, Universidad Politecnica de Valencia, Caminode Vera, s, 46022 Valencia, Spain;

    Department of Computer Engineering, Universidad Politecnica de Valencia, Caminode Vera, s, 46022 Valencia, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    web prediction and prefetching; prediction algorithm; web latency reduction; performance evaluation; measurement;

    机译:Web预测和预取;预测算法;Web延迟减少;性能评估;测量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号