首页> 外文期刊>Computer Communications >ADMIRE: Anomaly detection method using entropy-based PCA with three-step sketches
【24h】

ADMIRE: Anomaly detection method using entropy-based PCA with three-step sketches

机译:ADMIRE:使用基于熵的PCA和三步草图的异常检测方法

获取原文
获取原文并翻译 | 示例

摘要

Network anomaly detection using dimensionality reduction has recently been well studied in order to overcome the weakness of signature-based detection. Previous works have proposed a method for detecting particular anomalous IP-flows by using random projection (sketch) and a Principal Component Analysis (PCA). It yields promising high detection capability results without needing a pre-defined anomaly database. However, the detection method cannot be applied to the traffic flows at a single measurement point, and the appropriate parameter settings (e.g., the relationship between the sketch size and the number of IP addresses) have not yet been sufficiently studied. We propose in this paper a PCA-based anomaly detection algorithm called ADMIRE to supplement and expand the previous works. The key idea of ADMIRE is the use of three-step sketches and an adaptive parameter setting to improve the detection performance and ease its use in practice. We evaluate the effectiveness of ADMIRE using the longitudinal traffic traces captured from a transpacific link. The main findings of this paper are as follows: (1) We reveal the correlation between the number of IP addresses in the measured traffic and the appropriate sketch size. We take advantage of this relation to set the sketch size parameter. (2) ADMIRE outperforms traditional PCA-based detector and other detectors based on different theoretical backgrounds. (3) The types of anomalies reported by ADMIRE depend on the traffic features that are selected as input. Moreover, we found that a simple aggregation of several traffic features degrades the detection performance.
机译:为了克服基于签名的检测的弱点,最近对使用降维的网络异常检测进行了很好的研究。先前的工作提出了一种通过使用随机投影(草图)和主成分分析(PCA)来检测特定异常IP流的方法。它不需要预先定义的异常数据库即可产生有希望的高检测能力结果。但是,该检测方法不能应用于单个测量点的业务流,并且尚未充分研究适当的参数设置(例如,草图大小和IP地址数量之间的关系)。我们在本文中提出了一种基于PCA的异常检测算法ADMIRE,以补充和扩展以前的工作。 ADMIRE的关键思想是使用三步草图和自适应参数设置,以提高检测性能并简化其实际使用。我们使用从跨太平洋链接捕获的纵向交通轨迹评估ADMIRE的有效性。本文的主要发现如下:(1)我们揭示了被测流量中IP地址的数量与适当的草图大小之间的相关性。我们利用这种关系来设置草图尺寸参数。 (2)ADMIRE优于传统的基于PCA的检测器和其他基于不同理论背景的检测器。 (3)ADMIRE报告的异常类型取决于选择作为输入的交通特征。此外,我们发现几个流量功能的简单汇总会降低检测性能。

著录项

  • 来源
    《Computer Communications》 |2013年第5期|575-588|共14页
  • 作者单位

    Graduate School of Fundamental Science and Engineering, Waseda University, Tokyo, Japan;

    The Graduate University for Advanced Studies, Tokyo, Japan;

    The Graduate University for Advanced Studies, Tokyo, Japan,National Institute of Informatics/PRESTO JST. Tokyo, Japan;

    Graduate School of Fundamental Science and Engineering, Waseda University, Tokyo, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PCA; Hash; Sketch; Anomaly detection; Entropy;

    机译:PCA;哈希;草图;异常检测;熵;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号