首页> 外文期刊>Computer assisted language learning >Linking text readability and learner proficiency using linguistic complexity feature vector distance
【24h】

Linking text readability and learner proficiency using linguistic complexity feature vector distance

机译:使用语言复杂性链接文本可读性和学习者熟练程度特征向量距离

获取原文
获取原文并翻译 | 示例

摘要

How can we identify authentic reading material that matches the learner's proficiency and fosters their language development? Traditionally, this involves assigning a one-dimensional label to the text that identifies the grade or proficiency level of the learners that the text is intended for. Such an approach is inadequate given that both the text complexity and proficiency constructs are multi-dimensional in nature. We propose to instead link readers and texts through multidimensional vectors characterizing the linguistic complexity of the reading material and that of texts written by the learners as proxy of their proficiency level. We first validate the approach using a leveled reading corpus by showing that vector distances computed on the complexity representations can serve the function of the traditional labels. We then highlight the advantage of the multi-dimensional approach using data from a continuation writing task, showing that it makes it possible to study individual complexity dimensions and to explore different degrees of challenge for different dimensions. Our approach essentially makes it possible to empirically investigate the +1 of Krashen's i+1, the challenge that best fosters development given the learner's interlanguage. On the practical side, we discuss an ICALL system demonstrating the viabilityof the approach in real-life..
机译:我们如何确定与学习者的熟练程度相匹配的真实阅读材料,并促进他们的语言开发?传统上,这涉及将一维标签分配给识别学习者的年级或熟练程度的文本,即文本的目的。鉴于文本复杂性和熟练程度构建在本质上是多维的,这种方法不足。我们建议通过将读者和文本链接,通过多维向量,其特征,其特征是阅读材料的语言复杂性以及学习者所写的文本作为其熟练程度的代理。我们首先通过显示在复杂性表示上计算的向量距离来验证使用级别读取语料库的方法可以服务于传统标签的功能。然后,我们利用来自延续写入任务的数据突出了多维方法的优点,表明它可以研究各个复杂性维度并探索不同尺寸的不同挑战。我们的方法基本上可以明确调查Krashen的I + 1的+1,这是鉴于学习者的中介语的最佳发展的挑战。在实践方面,我们讨论了一个ICALL系统,证明了现实方法中的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号