首页> 外文期刊>Computer architecture news >Design Space Exploration of Adaptive Beamforming Acceleration for Bedside and Portable Medical Ultrasound Imaging
【24h】

Design Space Exploration of Adaptive Beamforming Acceleration for Bedside and Portable Medical Ultrasound Imaging

机译:床头和便携式医学超声成像自适应波束形成加速的设计空间探索

获取原文
获取原文并翻译 | 示例

摘要

The use of adaptive beamforming is a viable solution to provide high-resolution real-time medical ultrasound imaging. However, the increase in image resolution comes at an expense of a significant increase in compute requirement over conventional algorithms. In a bedside diagnosis setting where plug-in power is available, GPUs are promising accelerators to address the processing demand. However, in the case of point-of-care diagnostics where portable ultrasound imaging devices must be used, alternative power-efficient computer systems must be employed, possibly at the expense of lower image resolution in order to maintain real-time performance. This paper presents an initial design space exploration on viable compute architectures that might address the drastically different requirements between bedside and portable medical ultrasound imaging systems using adaptive beamforming. The design and implementation of a GPU accelerator that provides over 45x performance improvement over the equivalent C implementation on a single CPU is presented. Furthermore, and implementation of the beamforming algorithm on a high-performance mobile platform based on an ARM Cortex A8 mobile processor in combination with the built-in NEON accelerator is also presented. The mobile platform delivers over 270x reduction in power consumption when compared to the GPU platform at an expense of much reduced performance. The tradeoffs between power, performance and image quality among the target platforms are studied and future research directions in power-efficient architectures for high-performance medical ultrasound systems are presented.
机译:自适应波束形成的使用是提供高分辨率实时医学超声成像的可行解决方案。但是,图像分辨率的提高是以与传统算法相比显着增加的计算需求为代价的。在可以使用插入式电源的床边诊断环境中,GPU有望满足处理需求。但是,在即时诊断中必须使用便携式超声成像设备的情况下,必须采用其他节能的计算机系统,可能以降低图像分辨率为代价,以保持实时性能。本文介绍了对可行计算架构的初步设计空间探索,该架构可能会解决使用自适应波束形成的床头和便携式医学超声成像系统之间的巨大差异。提出了GPU加速器的设计和实现,与单个CPU上的等效C实现相比,该性能可提高45倍以上。此外,还介绍了波束形成算法在基于ARM Cortex A8移动处理器结合内置NEON加速器的高性能移动平台上的实现。与GPU平台相比,移动平台的功耗降低了270倍以上,但性能却大大降低。研究了目标平台之间功率,性能和图像质量之间的折衷,并提出了高性能医疗超声系统节能架构中的未来研究方向。

著录项

  • 来源
    《Computer architecture news》 |2011年第4期|p.20-25|共6页
  • 作者单位

    Department of Electrical and Electronic Engineering The University of Hong Kong, Hong Kong;

    Medical Engineering Program The University of Hong Kong, Hong Kong;

    Department of Electical Engineering The University of Cape Town, South Africa;

    Medical Engineering Program The University of Hong Kong, Hong Kong;

    Department of Electrical and Electronic Engineering The University of Hong Kong, Hong Kong;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号