首页> 外文期刊>Computer architecture news >Studying Multicore Processor Scaling via Reuse Distance Analysis
【24h】

Studying Multicore Processor Scaling via Reuse Distance Analysis

机译:通过重用距离分析研究多核处理器扩展

获取原文
获取原文并翻译 | 示例

摘要

The trend for multicore processors is towards increasing numbers of cores, with 100s of cores-i.e. large-scale chip multiprocessors (LCMPs)-possible in the future. The key to realizing the potential of LCMPs is the cache hierarchy, so studying how memory performance will scale is crucial. Reuse distance (RD) analysis can help architects do this. In particular, recent work has developed concurrent reuse distance (CRD) and private reuse distance (PRD) profiles to enable analysis of shared and private caches. Also, techniques have been developed to predict profiles across problem size and core count, enabling the analysis of configurations that are too large to simulate. This paper applies RD analysis to study the scalability of multicore cache hierarchies. We present a framework based on CRD and PRD profiles for reasoning about the locality impact of core count and problem scaling. We find interference-based locality degradation is more significant than sharing-based locality degradation. For 256 cores running small problems, the former occurs at small cache sizes, allowing moderate capacity scaling of multicore caches to achieve the same cache performance (MPKI) as a single-core cache. At very large problems, interference-based locality degradation increases significantly in many of our benchmarks. For shared caches, this prevents most of our benchmarks from achieving constant-MPKI scaling within a 256 MB capacity budget; for private caches, all benchmarks cannot achieve constant-MPKI scaling within 256 MB.
机译:多核处理器的趋势是越来越多的内核,即100个内核。将来可能会使用大规模芯片多处理器(LCMP)。实现LCMP潜力的关键是缓存层次结构,因此研究内存性能如何扩展至关重要。重用距离(RD)分析可以帮助建筑师做到这一点。特别是,最近的工作已经开发了并发重用距离(CRD)和私有重用距离(PRD)配置文件,以能够分析共享和私有缓存。同样,已经开发出了技术来预测问题大小和核心数量的概况,从而能够分析太大而无法模拟的配置。本文应用RD分析来研究多核缓存层次结构的可伸缩性。我们提出了一个基于CRD和PRD配置文件的框架,用于推理核心数量和问题扩展对本地性的影响。我们发现基于干扰的局域退化比基于共享的局域退化更为严重。对于运行小问题的256核,前者发生在较小的高速缓存大小处,从而允许对多核高速缓存进行适度的容量扩展,以实现与单核高速缓存相同的高速缓存性能(MPKI)。在非常大的问题上,在我们的许多基准测试中,基于干扰的局域性退化会大大增加。对于共享缓存,这会阻止我们的大多数基准测试在256 MB的容量预算内实现恒定的MPKI扩展。对于专用缓存,所有基准测试都无法在256 MB范围内实现恒定MPKI扩展。

著录项

  • 来源
    《Computer architecture news》 |2013年第3期|499-510|共12页
  • 作者单位

    Department of Electrical and Computer Engineering University of Maryland at College Park;

    Department of Electrical and Computer Engineering University of Maryland at College Park;

    Department of Electrical and Computer Engineering University of Maryland at College Park;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号