首页> 外文期刊>Computer Animation and Virtual Worlds >A novel augmented reality framework based on monocular semi-dense simultaneous localization and mapping
【24h】

A novel augmented reality framework based on monocular semi-dense simultaneous localization and mapping

机译:一种基于单眼半致密同步定位和测绘的新型增强现实框架

获取原文
获取原文并翻译 | 示例

摘要

Markerless tracking has been a trend in augmented reality (AR) applications nowadays, but it no longer satisfies users who want virtual characters to interact with the real world such as collision. Some sparse or dense simultaneous localization and mapping (SLAM) methods are proposed aiming to solve this problem. However, sparse methods only extract a plane from the sparse map, which cannot allow virtual characters to move realistically. Meanwhile, dense methods usually require powerful graphics processing unit (GPU) for dense mapping. In this paper, we present a real-time AR framework based on a semi-dense method with central processing unit (CPU). Specifically, the semi-dense method searches pixels with high gradients in each keyframe and estimates accurate depths by fusing matching pixels in other keyframes. We propose an outlier removal method that excludes three-dimensional points outside the camera trajectory. By integrating this method, our framework preserves clean edges of the real environment. The experimental results on the dataset show that our proposed framework has better surface reconstruction accuracy than other methods and our tracking thread runs in an acceptable speed when the semi-dense mapping thread runs backend. With the benefit of the robust camera tracking and the aligned surface, virtual characters of our AR application enable realistic movement and collision.
机译:无价值跟踪现在是增强现实(AR)应用程序的趋势,但它不再满足希望虚拟角色与碰撞等现实世界互动的用户。提出了一些稀疏或密集的同步定位和映射(SLAM)方法,旨在解决这个问题。但是,稀疏方法仅从稀疏地图中提取一个平面,这不能允许虚拟字符正在现实移动。同时,密集方法通常需要强大的图形处理单元(GPU)以密集映射。在本文中,我们介绍了一种基于具有中央处理单元(CPU)的半密度方法的实时AR框架。具体地,半密度方法在每个关键帧中搜索具有高梯度的像素,并通过融合在其他关键帧中的匹配像素来估计精确的深度。我们提出了一种异常删除方法,排除了相机轨迹外的三维点。通过集成此方法,我们的框架保留了实际环境的清洁边缘。 DataSet上的实验结果表明,我们的建议框架具有比其他方法更好的表面重建精度,并且当半密度映射线程运行后端时,我们的跟踪线程以可接受的速度运行。凭借强大的相机跟踪和对齐的表面,我们AR应用程序的虚拟字符使得现实的运动和碰撞。

著录项

  • 来源
    《Computer Animation and Virtual Worlds》 |2020年第3期|e1922.1-e1922.14|共14页
  • 作者单位

    Shanghai Univ Sch Commun & Informat Engn 99 Shangda Rd Shanghai 200444 Peoples R China|Shanghai Univ Inst Smart City Shanghai Peoples R China;

    Shanghai Univ Sch Commun & Informat Engn 99 Shangda Rd Shanghai 200444 Peoples R China|Shanghai Univ Inst Smart City Shanghai Peoples R China;

    Shanghai Univ Sch Commun & Informat Engn 99 Shangda Rd Shanghai 200444 Peoples R China|Shanghai Univ Inst Smart City Shanghai Peoples R China;

    Shanghai Univ Sch Commun & Informat Engn 99 Shangda Rd Shanghai 200444 Peoples R China|Shanghai Univ Inst Smart City Shanghai Peoples R China;

    Shanghai Univ Sch Commun & Informat Engn 99 Shangda Rd Shanghai 200444 Peoples R China|Shanghai Univ Inst Smart City Shanghai Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    AR; monocular SLAM; semi-dense mapping; surface reconstruction;

    机译:AR;单眼猛击;半致密映射;表面重建;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号