首页> 外文期刊>Computer Animation and Virtual Worlds >Accurate nonrigid 3D human body surface reconstruction using commodity depth sensors
【24h】

Accurate nonrigid 3D human body surface reconstruction using commodity depth sensors

机译:使用商品深度传感器进行精确的非刚性3D人体表面重建

获取原文
获取原文并翻译 | 示例

摘要

In the last decade, 3D modeling techniques enjoyed a booming development in both hardware and software. High-end hardware generates high fidelity results, but the cost is prohibitive, whereas consumer-level devices generate plausible results for entertainment purposes but are not appropriate for medical uses. We present a cost-effective and easy-to-use 3D body reconstruction system using consumer-grade depth sensors, which provides reconstructed body shapes with a high degree of accuracy and reliability appropriate for medical applications. Our surface registration framework integrates the articulated motion assumption, global loop closure constraint, and a general as-rigid-as-possible deformation model. To enhance the reconstruction quality, we propose a novel approach to accurately infer skeletal joints from anatomical data using multimodality registration. We further propose a supervised predictive model to infer the skeletal joints for arbitrary subjects independent from anatomical data reference. A rigorous validation test has been conducted on real subjects to evaluate the reconstruction accuracy and repeatability. Our system has the potential to make accurate body surface scanning systems readily available for medical professionals and the general public. The system can be used to obtain additional health data derived from 3D body shapes, such as the percentage of body fat.
机译:在过去的十年中,3D建模技术在硬件和软件方面都得到了飞速发展。高端硬件产生了高保真度的结果,但是成本却高得让人望而却步,而消费级设备则出于娱乐目的而产生了合理的结果,但不适用于医疗用途。我们提供了一种使用消费级深度传感器的经济高效且易于使用的3D人体重建系统,该系统可提供适合医疗应用的高精度和高可靠性的重建人体形状。我们的表面配准框架集成了铰接运动假设,整体环闭合约束和一般的刚-可能的变形模型。为了提高重建质量,我们提出了一种使用多模式配准从解剖学数据准确推断骨骼关节的新方法。我们进一步提出了一种监督预测模型,以推断独立于解剖学数据参考的任意受试者的骨骼关节。已对真实对象进行了严格的验证测试,以评估重建的准确性和可重复性。我们的系统有潜力使医疗专业人员和公众容易获得准确的体表扫描系统。该系统可用于获取源自3D体形的其他健康数据,例如体脂百分比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号