首页> 外文期刊>Computational Statistics >Detecting multiple outliers in linear regression using a cluster method combined with graphical visualization
【24h】

Detecting multiple outliers in linear regression using a cluster method combined with graphical visualization

机译:使用聚类方法和图形可视化相结合的线性回归检测多个异常值

获取原文
获取原文并翻译 | 示例

摘要

This paper provides a graphical visualization of multiple outliers based on a clustering algorithm using the minimal spanning tree, and proposes a modified version of this clustering algorithm for identifying multiple outliers. Graphical visualization is helpful for the classification of multiple outliers. It is shown that the proposed modified procedure preserves the performance of the clustering algorithm in identifying multiple outliers, but also reduces the problem of swamping of observations.
机译:本文基于使用最小生成树的聚类算法,提供了多个离群值的图形可视化,并提出了该聚类算法的修改版本,用于识别多个离群值。图形可视化有助于多个离群值的分类。结果表明,所提出的改进过程保留了聚类算法在识别多个离群值方面的性能,同时也减少了观测值的沼泽问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号