首页> 外文期刊>Computational Statistics >Computing electricity spot price prediction intervals using quantile regression and forecast averaging
【24h】

Computing electricity spot price prediction intervals using quantile regression and forecast averaging

机译:使用分位数回归和预测平均来计算电力现货价格的预测间隔

获取原文
获取原文并翻译 | 示例

摘要

We examine possible accuracy gains from forecast averaging in the context of interval forecasts of electricity spot prices. First, we test whether constructing empirical prediction intervals (PI) from combined electricity spot price forecasts leads to better forecasts than those obtained from individual methods. Next, we propose a new method for constructing PI—Quantile Regression Averaging (QRA)—which utilizes the concept of quantile regression and a pool of point forecasts of individual (i.e. not combined) models. While the empirical PI from combined forecasts do not provide significant gains, the QRA-based PI are found to be more accurate than those of the best individual model—the smoothed nonparametric autoregressive model.
机译:我们在电力现货价格的区间预测的背景下研究了平均预测可能带来的准确性提高。首先,我们测试从组合电力现货价格预测中构建经验预测间隔(PI)是否比通过单独方法获得的预测间隔更好。接下来,我们提出一种构建PI的新方法-均分回归平均(QRA),该方法利用了分位数回归的概念和单个(即未合并)模型的点预测池。尽管来自组合预测的经验PI不能提供明显的收益,但发现基于QRA的PI比最佳个体模型(平滑的非参数自回归模型)的PI更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号