首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Energy-Efficient Location and Activity-Aware On-Demand Mobile Distributed Sensing Platform for Sensing as a Service in IoT Clouds
【24h】

Energy-Efficient Location and Activity-Aware On-Demand Mobile Distributed Sensing Platform for Sensing as a Service in IoT Clouds

机译:物联网云中作为感知即服务的节能位置和活动感知按需移动分布式感知平台

获取原文
获取原文并翻译 | 示例

摘要

The Internet of Things (IoT) envisions billions of sensors deployed around us and connected to the Internet, where the mobile crowd sensing technologies are widely used to collect data in different contexts of the IoT paradigm. Due to the popularity of Big Data technologies, processing and storing large volumes of data have become easier than ever. However, large-scale data management tasks still require significant amounts of resources that can be expensive regardless of whether they are purchased or rented (e.g., pay-as-you-go infrastructure). Further, not everyone is interested in such large-scale data collection and analysis. More importantly, not everyone has the financial and computational resources to deal with such large volumes of data. Therefore, a timely need exists for a cloud-integrated mobile crowd sensing platform that is capable of capturing sensors data, on-demand, based on conditions enforced by the data consumers. In this paper, we propose a context-aware, specifically, location and activity-aware mobile sensing platform called context-aware mobile sensor data engine (C-MOSDEN) for the IoT domain. We evaluated the proposed platform using three real-world scenarios that highlight the importance of . The computational effectiveness and efficiency of the proposed platform are investigated and are used to highlight the advantages of context-aware selective sensing.
机译:物联网(IoT)构想了数十亿个传感器部署在我们周围并连接到Internet,移动人群感应技术被广泛用于在IoT范式的不同上下文中收集数据。由于大数据技术的普及,处理和存储大量数据变得前所未有的容易。但是,大规模数据管理任务仍然需要大量资源,无论这些资源是购买还是租用,这些资源都是昂贵的(例如,按需付费的基础架构)。此外,并非所有人都对这种大规模数据收集和分析感兴趣。更重要的是,并非每个人都拥有处理大量数据的财务和计算资源。因此,迫切需要一种集成了云的移动人群感应平台,该平台能够根据数据使用者强制执行的条件按需捕获传感器数据。在本文中,我们为物联网领域提出了一种上下文感知的,特别是位置和活动感知的移动感知平台,称为上下文感知的移动传感器数据引擎(C-MOSDEN)。我们使用三个现实世界场景来评估所提出的平台,这些场景突出了的重要性。研究了所提出平台的计算效率和效率,并用于强调上下文感知选择性感知的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号