首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Cyberthreat Analysis and Detection for Energy Theft in Social Networking of Smart Homes
【24h】

Cyberthreat Analysis and Detection for Energy Theft in Social Networking of Smart Homes

机译:智能家居社交网络中能源盗窃的网络威胁分析和检测

获取原文
获取原文并翻译 | 示例

摘要

The advanced metering infrastructure (AMI) has become indispensable in a smart grid to support the real time and reliable information exchange. Such an infrastructure facilitates the deployment of smart meters and enables the automatic measurement of electricity energy usage. Inside a community of networked smart homes, the total electricity bill is computed based on the community-wide energy consumption. Thus, the coordinated energy scheduling among smart homes is important since the energy consumptions from some customers can potentially impact bills of others. Given a community of networked smart homes, this paper analyzes the energy theft cyberattack, which manipulates the energy usage metering for bill reduction and develops a detection technique based on Bollinger bands and partially observable Markov decision process (POMDP). Due to the high complexity of the POMDP-solving process, a probabilistic belief-state-reduction-based adaptive dynamic programming technique is also designed to improve the detection efficiency. Our simulation results demonstrate that the proposed technique can successfully detect 92.55% energy thefts on an average while effectively mitigating the impact to the community. In addition, our probabilistic belief-state-reduction-based adaptive dynamic programming technique can reduce the runtime by up to 55.86% compared to that without state reduction.
机译:先进的计量基础设施(AMI)在智能电网中已成为必不可少的部分,以支持实时和可靠的信息交换。这样的基础设施有助于智能电表的部署,并能够自动测量电能使用量。在联网的智能家居社区内部,总电费是根据社区范围内的能耗计算的。因此,智能住宅之间的协调能源调度非常重要,因为某些客户的能源消耗可能会影响其他客户的账单。在给定一个联网的智能家居社区的情况下,本文分析了能源盗窃网络攻击,该攻击利用能源计量减少账单,并开发了一种基于Bollinger频带和部分可观察的马尔可夫决策过程(POMDP)的检测技术。由于POMDP解决过程的高度复杂性,还设计了一种基于概率置信度降低的自适应动态规划技术,以提高检测效率。我们的仿真结果表明,所提出的技术平均可以成功检测92.55%的能量盗窃,同时有效地减轻了对社区的影响。此外,与不减少状态的情况相比,我们基于概率信念状态减少的自适应动态规划技术可以将运行时间减少多达55.86%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号