首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Discovering the Hidden Structure of a Social Network: A Semi Supervised Approach
【24h】

Discovering the Hidden Structure of a Social Network: A Semi Supervised Approach

机译:发现社交网络的隐藏结构:一种半监督方法

获取原文
获取原文并翻译 | 示例

摘要

Contagions such as information, rumors, infectious diseases, actions, and influence diffuse as cascades in large networks. Each contagion appears in some node and spreads through the nodes over the underlying network. In most cases, the network structure is hidden and we can only observe the times at which nodes are infected by contagions. So, inferring network structures and analyzing information diffusion processes are required in various domains. The vast majority of existing methods are parametric with the assumption that the diffusion patterns of contagions follow a particular distribution. In this paper, we propose a nonparametric method to infer the network topology, regardless of the contagion propagation model. We consider a static network and a set of given observed cascades, then, we try to infer not only the edges of the network; but also their strengths. First, we model the diffusion network as a Markov decision process (MDP), where the transition probabilities are assumed as pairwise transmission rates between the nodes. Later, a reinforcement learning paradigm is employed to solve this MDP. As compared to other methods, we do not make any assumption about the information diffusion pattern in our method; making it more general purpose. Experimental results on both synthetic and real datasets show that our method outperforms several state-of-the-art methods for different types of network structures and propagation models.
机译:信息,谣言,传染病,行动和影响等传染性在大型网络中以级联形式扩散。每个蔓延出现在某个节点中,并在基础网络上的节点之间传播。在大多数情况下,网络结构是隐藏的,我们只能观察节点被感染所感染的时间。因此,在各个领域都需要推理网络结构和分析信息传播过程。现有的绝大多数方法都是参数化的,并假设传染性的扩散方式遵循特定的分布。在本文中,我们提出了一种非参数方法来推断网络拓扑,而与传染传播模型无关。我们考虑一个静态网络和一组给定的观察到的级联,然后,我们不仅尝试推断网络的边缘,还尝试推断网络的边缘。也是他们的长处首先,我们将扩散网络建模为马尔可夫决策过程(MDP),其中将转移概率假定为节点之间的成对传输速率。后来,采用强化学习范式来解决此MDP。与其他方法相比,我们没有对方法中的信息扩散模式做任何假设;使它更通用。在综合和真实数据集上的实验结果表明,对于不同类型的网络结构和传播模型,我们的方法优于几种最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号