首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Location-Aware Service Recommendations With Privacy-Preservation in the Internet of Things
【24h】

Location-Aware Service Recommendations With Privacy-Preservation in the Internet of Things

机译:物联网中具有隐私保存的位置感知服务建议

获取原文
获取原文并翻译 | 示例

摘要

With the ever-increasing maturity and popularization of the Internet of Things (IoT), tremendous business applications developed by distinct enterprises or organizations have been encapsulated into lightweight web services that can easily be accessed or invoked remotely. However, the big volume of candidate web services places a heavy burden on the users' service selection decision-making process. Under the circumstance, a variety of intelligent recommendation solutions have been developed to reduce the high decision-making cost. Traditional resolutions usually challenge in two aspects. First, the recommendation parameters, i.e., the quality of services (QoS), usually relies on user/service location heavily; therefore, low-quality recommended results may be returned to users if user/service location information is overlooked. Second, historical QoS data often contain partial sensitive information of users; therefore, it becomes a necessity to protect the sensitive QoS data while making accurate recommendation decisions. To tackle the above challenges, we introduce the concepts of user/service location information and locality-sensitive hashing (LSH) in the domain and propose a location-aware recommendation approach with privacy-preservation capability. A wide range of experiments is set up based on the popular WS-DREAM data set, whose results prove the effectiveness and efficiency of our approach.
机译:随着物联网的成熟度和普及(物联网),由不同的企业或组织开发的巨大的业务应用程序已被封装成轻质的Web服务,可以轻松地访问或传授远程访问或调用。然而,大量的候选网络服务对用户的服务选择决策过程造成了沉重的负担。在这种情况下,已经开发出各种智能推荐解决方案以降低高决策成本。传统决议通常在两个方面挑战。首先,推荐参数,即服务质量(QoS),通常依赖于用户/服务位置;因此,如果用户/服务位置信息被忽视,则可以将低质量推荐结果返回给用户。其次,历史QoS数据通常包含用户的部分敏感信息;因此,在进行准确的推荐决策的同时保护敏感QoS数据成为必要性。为了解决上述挑战,我们介绍了域中用户/服务位置信息和临时敏感散列(LSH)的概念,并提出了一种具有隐私保存功能的位置感知推荐方法。根据流行的WS-Dream数据集建立了广泛的实验,其结果证明了我们方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号