首页> 外文期刊>Computer Communications >Multi-dimensional quality-driven service recommendation with privacy-preservation in mobile edge environment
【24h】

Multi-dimensional quality-driven service recommendation with privacy-preservation in mobile edge environment

机译:多维质量驱动的服务推荐,包括移动边缘环境中的隐私保存

获取原文
获取原文并翻译 | 示例

摘要

With the advance of mobile edge computing (MEC), the number of edge services running on mobile devices grows explosively. In this situation, it is becoming a necessity to recommend the most suitable edge services to a mobile user from massive candidates, based on the historical quality of service (QoS) data. However, historical QoS is a kind of private data for users, which needs to be protected from privacy disclosure. Currently, researchers often use the Locality-Sensitive Hashing (LSH) technique to achieve the goal of privacy-aware recommendations. However, existing LSH-based methods are only applied to the recommendation scenarios with a single QoS dimension (e.g., response time or throughput), without considering the multi-dimensional QoS (e.g., response time and throughput) ensemble, which narrow the application scope of LSH in privacy-preserving recommendations significantly. Considering this drawback, this paper proposes a multi-dimensional quality ensemble-driven recommendation approach named Rec(LSH-TOPSIS) based on LSH and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) techniques. First, the traditional single-dimensional LSH recommendation approach is extended to be a multi-dimensional one, through which we can obtain a set of candidate services that a user may prefer. Second, we use TOPSIS technique to rank the derived multiple candidate services and return the user an optimal one. At last, a case study is presented to illustrate the feasibility of our proposal to make privacy-preserving edge service recommendations with multiple QoS dimensions.
机译:随着移动边缘计算(MEC)的进展,移动设备上运行的边缘服务的数量爆炸性地增长。在这种情况下,基于历史服务(QoS)数据的历史质量,它正在成为从大规模候选者向移动用户推荐最合适的优势服务。但是,历史QoS是用户的一种私人数据,需要免受隐私披露的保护。目前,研究人员经常使用地区敏感散列(LSH)技术来实现隐私感知建议的目标。但是,基于LSH的方法仅应用于具有单个QoS维度(例如,响应时间或吞吐量)的推荐方案,而不考虑缩小应用范围的多维QoS(例如,响应时间和吞吐量)集合LSH在隐私保护建议中显着。考虑到这一缺点,本文提出了一种基于LSH和TOPSIS(通过相似性与理想解决方案的顺序偏好的技术)的多维质量集合驱动推荐方法。首先,传统的单维LSH推荐方法被扩展为多维,通过,我们可以通过该方法获得用户可能更喜欢的一组候选服务。其次,我们使用Topsis技术对派生多个候选服务进行排名并将用户返回最佳候选服务。最后,提出了一个案例研究以说明我们提案的可行性,以便具有多个QoS尺寸的隐私保留边缘服务建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号