首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Two-Path Deep Semisupervised Learning for Timely Fake News Detection
【24h】

Two-Path Deep Semisupervised Learning for Timely Fake News Detection

机译:及时假新闻检测的双径深度半化学习

获取原文
获取原文并翻译 | 示例

摘要

News in social media, such as Twitter, has been generated in high volume and speed. However, very few of them are labeled (as fake or true news) by professionals in near real time. In order to achieve timely detection of fake news in social media, a novel framework of two-path deep semisupervised learning (SSL) is proposed where one path is for supervised learning and the other is for unsupervised learning. The supervised learning path learns on the limited amount of labeled data, while the unsupervised learning path is able to learn on a huge amount of unlabeled data. Furthermore, these two paths implemented with convolutional neural networks (CNNs) are jointly optimized to complete SSL. In addition, we build a shared CNN to extract the low-level features on both labeled data and unlabeled data to feed them into these two paths. To verify this framework, we implement a Word CNN-based SSL model and test it on two data sets: LIAR and PHEME. Experimental results demonstrate that the model built on the proposed framework can recognize fake news effectively with very few labeled data.
机译:在社交媒体(如Twitter)中的新闻已经以高卷和速度产生。但是,在近实时的专业人士,他们中的很少有人被标记(作为假或真实新闻)。为了在社交媒体上及时检测假新闻,提出了一种新的深度半化学习(SSL)的新框架,其中一个路径用于监督学习,另一条路径是为了无监督的学习。监督的学习路径在有限的标记数据上学习,而无监督的学习路径能够在大量的未标记数据上学习。此外,通过卷积神经网络(CNNS)实现的这两条路径共同优化以完成SSL。此外,我们构建共享CNN以在标记的数据和未标记的数据上提取低级功能,以将它们送入这两条路径。要验证此框架,我们实现了基于CNN的SSL模型,并在两个数据集中测试:骗子和PHEME。实验结果表明,在拟议的框架上建立的模型可以用很少的标记数据有效地识别假新闻。

著录项

  • 来源
  • 作者单位

    Prairie View A&M Univ Texas A&M Univ Syst Ctr Excellence Res & Educ Big Mil Data Intelligen CREDIT Ctr Dept Elect & Comp Engn Prairie View TX 77446 USA|Prairie View A&M Univ Texas A&M Univ Syst Ctr Computat Syst Biol Dept Elect & Comp Engn Prairie View TX 77446 USA;

    Prairie View A&M Univ Texas A&M Univ Syst Ctr Excellence Res & Educ Big Mil Data Intelligen CREDIT Ctr Dept Elect & Comp Engn Prairie View TX 77446 USA;

    Prairie View A&M Univ Texas A&M Univ Syst Ctr Excellence Res & Educ Big Mil Data Intelligen CREDIT Ctr Dept Elect & Comp Engn Prairie View TX 77446 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Convolutional neural networks (CNNs); deep semisupervised learning (SSL); fake news detection; joint optimization;

    机译:卷积神经网络(CNNS);深闺学习(SSL);假新闻检测;联合优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号