首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Detection of Malicious Social Bots Using Learning Automata With URL Features in Twitter Network
【24h】

Detection of Malicious Social Bots Using Learning Automata With URL Features in Twitter Network

机译:在Twitter网络中使用Learnic Automata检测具有URL功能的乐意社交机器人

获取原文
获取原文并翻译 | 示例

摘要

Malicious social bots generate fake tweets and automate their social relationships either by pretending like a follower or by creating multiple fake accounts with malicious activities. Moreover, malicious social bots post shortened malicious URLs in the tweet in order to redirect the requests of online social networking participants to some malicious servers. Hence, distinguishing malicious social bots from legitimate users is one of the most important tasks in the Twitter network. To detect malicious social bots, extracting URL-based features (such as URL redirection, frequency of shared URLs, and spam content in URL) consumes less amount of time in comparison with social graph-based features (which rely on the social interactions of users). Furthermore, malicious social bots cannot easily manipulate URL redirection chains. In this article, a learning automata-based malicious social bot detection (LA-MSBD) algorithm is proposed by integrating a trust computation model with URL-based features for identifying trustworthy participants (users) in the Twitter network. The proposed trust computation model contains two parameters, namely, direct trust and indirect trust. Moreover, the direct trust is derived from Bayes' theorem, and the indirect trust is derived from the Dempster-Shafer theory (DST) to determine the trustworthiness of each participant accurately. Experimentation has been performed on two Twitter data sets, and the results illustrate that the proposed algorithm achieves improvement in precision, recall, F-measure, and accuracy compared with existing approaches for MSBD.
机译:恶意社交机器人通过假装像追随者或通过创建具有恶意活动的多个假帐户创建多个假账户来生成假的推文,自动化他们的社会关系。此外,恶意社交机组在推文中缩短了恶意网址,以将在线社交网络参与者的请求重定向一些恶意服务器。因此,从合法用户中区分恶意社交机器人是Twitter网络中最重要的任务之一。要检测恶意的社交机器人,提取基于URL的特征(例如URL重定向,共享URL的频率,URL中的垃圾邮件内容)与基于社交图的特征(依赖于用户的社交交互),消耗少量的时间)。此外,恶意社交机器人不能轻易操纵URL重定向链。在本文中,通过将信任计算模型与基于URL的特征集成来识别Twitter网络中的基于URL的特征来提出基于学习自动机的恶意社交机器人算法。所提出的信任计算模型包含两个参数,即直接信任和间接信任。此外,直接信任来自贝叶斯定理,间接信任来自Dempster-Shafer理论(DST)来确定每个参与者的可靠性。已经在两个Twitter数据集上执行了实验,结果说明了所提出的算法对与MSBD的现有方法相比的精度,召回,F测量和精度的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号