首页> 外文期刊>Computational Social Systems, IEEE Transactions on >User Behavior Prediction of Social Hotspots Based on Multimessage Interaction and Neural Network
【24h】

User Behavior Prediction of Social Hotspots Based on Multimessage Interaction and Neural Network

机译:基于多方体交​​互和神经网络的社交热点的用户行为预测

获取原文
获取原文并翻译 | 示例

摘要

In network public-opinion analysis, the diversity of messages under social hot topics plays an important role in user participation behavior. Considering the interactions among multiple messages and the complex user behaviors, this article proposes a prediction model of user participation behavior during multiple messaging of hot social topics. First, considering the influence of multimessage interaction on user participation behavior, a multimessage interaction influence-driving mechanism was proposed to predict user participation behavior more accurately. Second, in the view of the behavioral complexity of users engaging in multimessage hotspots and the simple structure of backpropagation (BP) neural networks (which can map complex nonlinear relationships), this study proposes a user participant behavior prediction model of social hotspots based on a multimessage interaction-driving mechanism and the BP neural network. Finally, the multimessage interaction has an iterative guiding effect on user behavior, which easily causes overfitting of the BP neural network. To avoid this problem, the traditional BP neural network is optimized by a simulated annealing algorithm to further improve the prediction accuracy. In evaluation experiments, the model not only predicted the user participation behavior in actual situations of multimessage interaction but also further quantified the correlations among multiple messages on hot topics.
机译:在网络公共意见分析中,社会热门主题下的消息的多样性在用户参与行为中发挥着重要作用。考虑到多个消息之间的交互和复杂的用户行为之间的相互作用,本文提出了在热门社会主题的多个消息传递期间用户参与行为的预测模型。首先,考虑到多方次相互作用对用户参与行为的影响,提出了一种更准确地预测用户参与行为的多方派相互作用影响机制。其次,鉴于用户从事多方体热点的用户的行为复杂性和背部经历的简单结构(BP)神经网络(可以映射复杂非线性关系),本研究提出了基于A的社交热点的用户参与者行为预测模型多方体交互驱动机制与BP神经网络。最后,多方派相互作用对用户行为具有迭代指导效果,这容易导致BP神经网络的过度接收。为了避免这个问题,传统的BP神经网络通过模拟退火算法进行了优化,以进一步提高预测精度。在评估实验中,该模型不仅预测了多能物质交互的实际情况中的用户参与行为,而且还在热门话题上进一步量化了多个消息之间的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号