首页> 外文期刊>Computational Social Systems, IEEE Transactions on >BTR: A Feature-Based Bayesian Task Recommendation Scheme for Crowdsourcing System
【24h】

BTR: A Feature-Based Bayesian Task Recommendation Scheme for Crowdsourcing System

机译:BTR:众包系统的基于特征的贝叶斯任务推荐计划

获取原文
获取原文并翻译 | 示例

摘要

The crowdsourcing system is a distributed problem-solving platform, in which tasks are delivered to the crowd (i.e., crowdworkers) in the form of an open call. Usually, large-scale crowdsourcing systems contain abundant microtasks, and the overhead of a crowdworker spending on searching the appropriate task may be comparable to the cost of completing the task. Therefore, task recommendation is necessary. However, existing work ignores the dynamics in crowdsourcing system, i.e., new tasks continually arrive, which leads to the issues of task cold-start. To overcome the challenge of the new coming task recommendation, this article proposes a feature-based Bayesian task recommendation (BTR) scheme. The key idea to deal with the dynamics of the crowdsourcing system lies in that the BTR learns the latent factor of the task through the task features instead of task ID and then learns the user's preference according to their historical behaviors. Specifically, based on task features and the user's historical behavior records, BTR can not only timely provide crowdworkers with personalized task recommendations but also solve the task cold-start problem. The simulations based on the real crowdsourced data set demonstrate that BTR performs better than other typical schemes that target at recommending the newly arrived tasks to crowdworkers.
机译:众包系统是一个分布式问题解决平台,其中任务以打开电话的形式传送到人群(即,人群公司)。通常,大型众包系统包含丰富的微放大功能,搜索适当任务的人群公司支出的开销可能与完成任务的成本相媲美。因此,需要任务建议。然而,现有工作忽略了众包系统中的动态,即,新任务不断到达,这导致了Coll-Start的任务问题。为了克服新的即将到来的任务建议的挑战,本文提出了一个以特征为本的贝叶斯任务推荐(BTR)计划。处理众包系统动态的关键主意在于,BTR通过任务特征而不是任务ID学习任务的潜在因子,然后根据其历史行为来学习用户的偏好。具体而言,基于任务特征和用户的历史行为记录,BTR不仅可以及时为人群提供个性化任务建议,还可以解决任务冷启动问题。基于真正的众包数据集的模拟表明,BTR比其他典型方案更好地进行了将新到达新的任务推荐给人群公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号