首页> 外文期刊>Computational methods and function theory >Analytic Continuation of Taylor-Dirichlet Series and Non-Vanishing Solutions of a Differential Equation of Infinite Order
【24h】

Analytic Continuation of Taylor-Dirichlet Series and Non-Vanishing Solutions of a Differential Equation of Infinite Order

机译:泰勒-狄里克雷特级数的解析连续性和无穷微分方程的非清零解

获取原文
获取原文并翻译 | 示例

摘要

In the spirit of the Fabry-Polya Gap Theorems on the singularities of power series, we investigate similar phenomena for Taylor-Dirichlet seriesrn∞∑(μ_n-1 ∑ j=0 c_(n,j)z~j)e~(λ_nz)rnassociated to the positive real multiplicity-sequence ∧ = {λ_n,μ_n}∞n=1. Assume that ∧ has positive finite density d, counting multiplicities, and that ∧ belongs to a certain class that we denote by U(d,0). LetrnF(z)=∞∏n=1(1-z~2/λ_n~2)~μ_n and g(z,w)=exp(wz)/F(w).rnThen the seriesrn∞ ∑ n=1(μ_n-1 ∑ j=0 c_(n,j)z~j)e~λ_n~z = ∑ res g(z,λ_n), defines an analytic function in the open left half-plane C_. This function cannot be extended analytically across any open interval lying on the imaginary axis having length greater than 2nd. Nevertheless, this series can be extended analytically as an even function to the open right half-plane C_+ across the open segment (-iπd, iπd). Applications are given to a differential equation of infinite order. Let D = d/dx and L(z) = zF{z). The equation L(D)f{x) = 0 with the boundary condition lim_(x→±∞) f(x) = 0 has non-vanishing solutions. Extensions are given with D = d/dz.
机译:本着关于幂级数奇异性的Fabry-Polya间隙定理的精神,我们研究了Taylor-Dirichlet级数rn∞∑(μ_n-1∑ j = 0 c_(n,j)z〜j)e〜(λ_nz与正实多序数∧= {λ_n,μ_n}∞n= 1相关。假设∧具有正的有限密度d(计算乘数),并且∧属于我们用U(d,0)表示的特定类别。令F(z)= ∞∏n = 1(1-z〜2 /λ_n〜2)〜μ_n且g(z,w)= exp(wz)/ F(w).rnn则序列∞∞∑ n = 1( μ_n-1∑ j = 0 c_(n,j)z〜j)e〜λ_n〜z = ∑ res g(z,λ_n),定义了左开放半平面C_中的解析函数。该函数不能解析地扩展到长度大于2nd的虚轴上的任何打开间隔。尽管如此,该系列可以作为偶函数扩展到整个开放段(-iπd,iπd)上的开放右半平面C_ +。给出了无穷微分方程的应用。令D = d / dx和L(z)= zF {z)。边界条件lim_(x→±∞)f(x)= 0的方程L(D)f {x)= 0具有不消失的解。扩展名为D = d / dz。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号