首页> 外文期刊>Computational methods and function theory >Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets
【24h】

Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets

机译:紧集对数容量的快速准确计算

获取原文
获取原文并翻译 | 示例

摘要

We present a numerical method for computing the logarithmic capacity of compact subsets of C, which are bounded by Jordan curves and have finitely connected complement. The subsets may have several components and need not have any special symmetry. The method relies on the conformal map onto lemniscatic domains and, computationally, on the solution of a boundary integral equation with the Neumann kernel. Our numerical examples indicate that the method is fast and accurate. We apply it to give an estimate of the logarithmic capacity of the Cantor middle third set and generalizations of it.
机译:我们提出了一种数值方法,用于计算C的紧凑子集的对数容量,C的子集受Jordan曲线限制并具有有限的补数。子集可以具有多个组件,并且不需要具有任何特殊的对称性。该方法依赖于两性域上的共形图,并且在计算上依赖于具有Neumann核的边界积分方程的解。我们的数值例子表明该方法是快速而准确的。我们用它来估计Cantor中第三组的对数容量及其推广。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号