首页> 外文期刊>Computational Mechanics >Iterative solutions for implicit Time Discontinuous Galerkin methods applied to non-linear elastodynamics
【24h】

Iterative solutions for implicit Time Discontinuous Galerkin methods applied to non-linear elastodynamics

机译:隐式时间不连续Galerkin方法在非线性弹性动力学上的迭代解

获取原文
获取原文并翻译 | 示例

摘要

Time Discontinuous Galerkin methods require the factorization of a matrix larger than that exploited in standard implicit schemes. Therefore, they lend themselves to implementations based on predictor-multicorrector solution algorithms. In this paper, various convergent and computationally efficient iterative methods implemented in the unknown displacements for determining the solution of non linear systems are proposed. The iterative solutions presented here differ from those implemented in the unknown velocities in that they are computationally superior. The results of numerical simulations relevant to Duffing oscillators and to a stiff spring pendulum discretized with finite elements which are designed to evaluate the efficacy of these iterative methods with non-linear systems, show a low-computational expense when compared to earlier iterative schemes.
机译:时间不连续Galerkin方法需要对矩阵进行因子分解,该矩阵要比标准隐式方案中所利用的矩阵大。因此,他们适合基于预测器-多校正器解决方案算法的实现。在本文中,提出了各种在未知位移上实现的收敛和计算有效的迭代方法,用于确定非线性系统的解。此处介绍的迭代解决方案与未知速度下实现的解决方案不同,因为它们在计算上是优越的。与Duffing振子以及离散有限元离散的刚性弹簧摆有关的数值模拟结果,设计用于评估非线性系统中这些迭代方法的效果,与早期的迭代方案相比,计算成本较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号