首页> 外文期刊>Computational Mechanics >Strong displacement discontinuities and Lagrange multipliers in the analysis of finite displacement fracture problems
【24h】

Strong displacement discontinuities and Lagrange multipliers in the analysis of finite displacement fracture problems

机译:有限位移断裂问题分析中的强位移不连续性和拉格朗日乘数

获取原文
获取原文并翻译 | 示例

摘要

The finite displacement formulation of a quadrilateral element containing an embedded displacement discontinuity is presented. The formulation is based on the kinematically optimal technique, and some known defects of this technique are addressed. Lagrange multipliers are adopted to ensure the correct crack closure prior to initiation. Six additional degrees of freedom in each element allow the representation of the two states of the crack. A classical enhanced strain technique is employed to improve the bending performance of the element. Numerical examples illustrate both the robustness and the accuracy of the proposed solutions.
机译:提出了包含嵌入位移不连续性的四边形单元的有限位移公式。该公式基于运动学上的最佳技术,并且解决了该技术的一些已知缺陷。拉格朗日乘数用于确保在引发之前正确的裂纹闭合。每个元素中的六个附加自由度允许表示裂纹的两个状态。采用经典的增强应变技术来改善元件的弯曲性能。数值算例说明了所提出解决方案的鲁棒性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号