首页> 外文期刊>Computational Mechanics >A fast multipole boundary element method for 2D multi-domain elastostatic problems based on a dual BIE formulation
【24h】

A fast multipole boundary element method for 2D multi-domain elastostatic problems based on a dual BIE formulation

机译:基于对偶BIE公式的二维多域弹性静力学问题的快速多极边界元方法

获取原文
获取原文并翻译 | 示例

摘要

A new fast multipole formulation for the hypersingular BIE (HBIE) for 2D elasticity is presented in this paper based on a complex-variable representation of the kernels, similar to the formulation developed earlier for the conventional BIE (CBIE). A dual BIE formulation using a linear combination of the developed CBIE and HBIE is applied to analyze multi-domain problems with thin inclusions or open cracks. Two pre-conditioners for the fast multipole boundary element method (BEM) are devised and their effectiveness and efficiencies in solving large-scale problems are discussed. Several numerical examples are presented to study the accuracy and efficiency of the developed fast multipole BEM using the dual BIE formulation. The numerical results clearly demonstrate the potentials of the fast multipole BEM for solving large-scale 2D multi-domain elasticity problems. The method can be applied to study composite materials, functionally-graded materials, and micro-electro-mechanical-systems with coupled fields, all of which often involve thin shapes or thin inclusions.
机译:本文基于颗粒的复杂变量表示形式,提出了一种用于2D弹性的超奇异BIE(HBIE)的新的快速多极公式,类似于先前为常规BIE(CBIE)开发的公式。使用已开发的CBIE和HBIE的线性组合的双重BIE公式可分析带有薄夹杂物或开裂的多域问题。设计了两种用于快速多极边界元方法(BEM)的预处理器,并讨论了它们在解决大规模问题中的有效性和效率。给出了几个数值示例,以研究使用双重BIE公式开发的快速多极BEM的准确性和效率。数值结果清楚地证明了快速多极BEM解决大型2D多域弹性问题的潜力。该方法可用于研究具有耦合场的复合材料,功能渐变材料和微机电系统,这些领域通常涉及薄形状或薄夹杂物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号