...
首页> 外文期刊>Computational Mechanics >Increasing the critical time step: micro-inertia, inertia penalties and mass scaling
【24h】

Increasing the critical time step: micro-inertia, inertia penalties and mass scaling

机译:增加关键时间步长:微惯性,惯性损失和质量缩放

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Explicit time integration is a popular method to simulate the dynamical behaviour of a system. Unfortunately, explicit time integration is only conditionally stable: the time step must be chosen not larger than the so-called “critical time step”, otherwise the numerical solution may become unstable. To reduce the CPU time needed to carry out simulations, it is desirable to explore methods that increase the critical time step, which is the main objective of our paper. To do this, first we discuss and compare three approaches to increase the critical time step: micro-inertia formulations from continuum mechanics, inertia penalties which are used in computational mechanics, and mass scaling techniques that are mainly used in structural dynamics. As it turns out, the similarities between these methods are significant, and in fact they are identical in 1D if linear finite elements are used. This facilitates interpretation of the additional parameters in the various methods. Next, we derive, for a few simple finite element types, closed-form expressions for the critical time step with micro-structural magnification factors. Finally, we discuss computational overheads and some implementational details.
机译:显式时间积分是一种流行的方法,可以模拟系统的动态行为。不幸的是,显式时间积分仅在条件上是稳定的:时间步长必须选择为不大于所谓的“临界时间步长”,否则数值解可能会变得不稳定。为了减少执行仿真所需的CPU时间,希望探索增加关键时间步长的方法,这是本文的主要目标。为此,我们首先讨论并比较三种增加关键时间步长的方法:来自连续体力学的微惯性公式,用于计算力学的惯性罚分和主要用于结构动力学的质量缩放技术。事实证明,这些方法之间的相似性非常重要,实际上,如果使用线性有限元,它们在一维中是相同的。这有助于在各种方法中解释附加参数。接下来,对于一些简单的有限元类型,我们导出了具有微结构放大因子的关键时间步的闭式表达式。最后,我们讨论了计算开销和一些实现细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号