首页> 外文期刊>Computational Mechanics >Accurate finite element modeling of linear elastodynamics problems with the reduced dispersion error
【24h】

Accurate finite element modeling of linear elastodynamics problems with the reduced dispersion error

机译:线性弹性动力学问题的精确有限元建模,色散误差减小

获取原文
获取原文并翻译 | 示例

摘要

It is known that the reduction in the finite element space discretization error for elastodynamics problems is related to the reduction in numerical dispersion of finite elements. In the paper, we extend the modified integration rule technique for the mass and stiffness matrices to the dispersion reduction of linear finite elements for linear elastodynamics. The analytical study of numerical dispersion for the modified integration rule technique and for the averaged mass matrix technique is carried out in the 1-D, 2-D and 3-D cases for harmonic plane waves. In the general case of loading, the numerical study of the effectiveness of the dispersion reduction techniques includes the filtering technique (developed in our previous papers) that identifies and removes spurious high-frequency oscillations. 1-D, 2-D and 3-D impact problems for which all frequencies of the semi-discrete system are excited are solved with the standard approach and with the new dispersion reduction technique. Numerical results show that compared with the standard mass and stiffness matrices, the simple dispersion reduction techniques lead to a considerable decrease in the number of degrees of freedom and computation time at the same accuracy, especially for multi-dimensional problems. A simple quantitative estimation of the effectiveness of the finite element formulations with reduced numerical dispersion compared with the formulation based on the standard mass and stiffness matrices is suggested.
机译:众所周知,用于弹性动力学问题的有限元空间离散化误差的减小与有限元数值离散的减小有关。在本文中,我们将质量和刚度矩阵的改进积分规则技术扩展到了线性弹性动力学线性有限元的色散减小。在谐波平面波的一维,二维和三维情况下,对改进的积分规则技术和平均质量矩阵技术进行了数值色散的分析研究。在负载的一般情况下,色散降低技术有效性的数值研究包括识别和消除杂散高频振荡的滤波技术(在我们之前的论文中得到发展)。使用标准方法和新的色散降低技术解决了半离散系统的所有频率都被激发的1-D,2-D和3-D冲击问题。数值结果表明,与标准质量和刚度矩阵相比,简单的色散降低技术导致自由度数和计算时间的减少,且精度相同,尤其是对于多维问题。与基于标准质量和刚度矩阵的公式相比,建议对数值离散减小的有限元公式的有效性进行简单的定量估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号